Skip to main content
Log in

Hypoxia-mimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1α independent mechanisms

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Hypoxia presents pro-apoptotic and anti-apoptotic biphasic effects that appear to be dependent upon cell types and conditions around cells. The substantial reports demonstrated that commonly used hypoxia-mimetic agents cobalt chloride (CoCl2) and desferrioxamine (DFO) could also induce apoptosis in many different kinds of cells, but the mechanism was poorly understood. In this work, we compare the apoptosis-inducing effects of these two hypoxia-mimetic agents with acute myeloid leukemic cell lines NB4 and U937 as in vitro models. The results show that both of them induce these leukemic cells to undergo apoptosis with a loss of mitochondrial transmembrane potentials (ΔΨ m), the activation of caspase-3/8 and the cleavage of anti-apoptotic protein Mcl-1, together with the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein, a critical regulator for the cellular response to hypoxia. Metavanadate and sodium nitroprusside significantly abrogate DFO rather than CoCl2-induced mitochondrial Δ Ψ m collapse, caspase-3/8 activation, Mcl-1 cleavage and apoptosis, but they fail to influence DFO and CoCl2-induced HIF-1α protein accumulation. Moreover, inducible expression of HIF-1α gene dose not alter DFO and CoCl2-induced apoptosis in U937 cells. In conclusion, these results propose that although both DFO and CoCl2-induced leukemic cell apoptosis by mitochondrial pathway-dependent and HIF-1α-independent mechanisms, DFO and CoCl2-induced apoptosis involves different initiating signal pathways that remain to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hajra KM, Liu JR. Apoptosome dysfunction in human cancer. Apoptosis 2004; 9: 691–704.

    Article  CAS  PubMed  Google Scholar 

  2. Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor microenvironment. Cancer Res 1996; 56: 5754–5757.

    CAS  PubMed  Google Scholar 

  3. Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M. A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 1998; 2: 259–265.

    Article  CAS  PubMed  Google Scholar 

  4. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  5. Kunz M, Ibrahim S, Koczan D, et al. Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma. Cell Growth Differ 2001; 12: 137–145.

    CAS  PubMed  Google Scholar 

  6. Nagaraj NS, Vigneswaran N, Zacharias W. Hypoxia-mediated apoptosis in oral carcinoma cells occurs via two independent pathways. Mol Cancer 2004; 3: 38.

    Google Scholar 

  7. Dong Z, Wang JZ, Yu F, Venkatachalam MA. Apoptosis-resistance of hypoxic cells: Multiple factors involved and a role for IAP-2. Am J Pathol 2003; 163: 663–671.

    CAS  PubMed  Google Scholar 

  8. Dong Z, Wang J. Hypoxia selection of death-resistant cells: A role for Bcl-XL. J Biol Chem 2004; 279: 9215–9221.

    CAS  PubMed  Google Scholar 

  9. Harrison L, Blackwell K. Hypoxia and anemia: Factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist 2004; 9: 31–40.

    Article  PubMed  Google Scholar 

  10. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1 α. Nature 1998; 392: 405–408.

    CAS  PubMed  Google Scholar 

  11. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 1998; 8: 588–594.

    Article  CAS  PubMed  Google Scholar 

  12. Yang SJ, Pyen J, Lee I, Lee H, Kim Y, Kim T. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. J Biochem Mol Biol 2004; 37: 480–486.

    CAS  PubMed  Google Scholar 

  13. Araya J, Maruyama M, Inoue A, et al. Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2002; 283: L849–L858.

    CAS  PubMed  Google Scholar 

  14. Zou W, Yan M, Xu W, et al. Cobalt chloride induces PC12 cells apoptosis through reactive oxygen species and accompanied by AP-1 activation. J Neurosci Res 2001; 64: 646–653.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HJ, Yang SJ, Kim YS, Kim TU. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase activation in human cervical cancer HeLa cells. J Biochem Mol Biol 2003; 36: 468–474.

    CAS  PubMed  Google Scholar 

  16. Piret JP, Mottet D, Raes M, Michiels C. CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann NY Acad Sci 2002; 973: 443–447.

    Article  CAS  PubMed  Google Scholar 

  17. Becton DL, Roberts B. Antileukemic effects of deferoxamine on human myeloid leukemia cell lines. Cancer Res 1989; 49: 4809–4812.

    CAS  PubMed  Google Scholar 

  18. Hileti D, Panayiotidis P, Hoffbrand AV. Iron chelators induce apoptosis in proliferating cells. Br J Haematol 1995; 89: 181–187.

    CAS  PubMed  Google Scholar 

  19. Haq RU, Wereley JP, Chitambar CR. Induction of apoptosis by iron deprivation in human leukemic CCRF-CEM cells. Exp Hematol 1995; 23: 428–432.

    CAS  PubMed  Google Scholar 

  20. Kovar J, Stunz LL, Stewart BC, Kriegerbeckova K, Ashman RF, Kemp JD. Direct evidence that iron deprivation induces apoptosis in murine lymphoma 38C13. Pathobiology 1997; 65: 61–68.

    CAS  PubMed  Google Scholar 

  21. Fukuchi K, Tomoyasu S, Tsuruoka N, Gomi K. Iron deprivation-induced apoptosis in HL-60 cells. FEBS Lett 1994; 350: 139–142.

    Article  CAS  PubMed  Google Scholar 

  22. Simonart T, Degraef C, Andrei G, et al. Iron chelators inhibit the growth and induce the apoptosis of Kaposi's sarcoma cells and of their putative endothelial precursors. J Invest Dermatol 2000; 115: 893–900.

    Article  CAS  PubMed  Google Scholar 

  23. Fan L, Iyer J, Zhu S, et al. Inhibition of N-myc expression and induction of apoptosis by iron chelation in human neuroblastoma cells. Cancer Research 2001; 61: 1073–1079.

    CAS  PubMed  Google Scholar 

  24. Jensen PO, Mortensen BT, Hodgkiss RJ, et al. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukemia in rats. Cell Prolif 2000; 33: 381–395.

    Article  CAS  PubMed  Google Scholar 

  25. Boer J, Bonten-Surtel J, Grosveld G. Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol 1998; 18: 1236–1247.

    CAS  PubMed  Google Scholar 

  26. Zhu XH, Shen YL, Jing YK, et al. Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations. J Natl Cancer Inst 1999; 91: 772–778.

    Article  CAS  PubMed  Google Scholar 

  27. Huang Y, Du KM, Xue ZH, et al. Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: possible mediation of hypoxia-inducible factor-1alpha. Leukemia 2003; 17: 2065–2073.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang Y, Shen WJ, Xue ZH, et al. Desferrioxamine induces leukemic cell differentiation by hypoxia inducible factor-1a and CCAAT/enhancer-binding protein-a-dependent mechanisms. Leukemia 2005; 19: 1239–1247.

    Article  CAS  Google Scholar 

  29. Overbeeke R, Steffens-Nakken H, Vermes I, Reutelingsperger C, Haanen C. Early features of apoptosis detected by four different flow cytometry assays. Apoptosis 1998; 3: 115–121.

    Article  CAS  PubMed  Google Scholar 

  30. Chen GQ, Zhu J, Shi XG, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and alteration of PML-RAR/PML protein localization. Blood 1996; 88: 1052–1061.

    CAS  PubMed  Google Scholar 

  31. Debatin KM. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 2004; 53: 153–159.

    Article  PubMed  Google Scholar 

  32. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85: 817–827.

    Article  CAS  PubMed  Google Scholar 

  33. Gao N, Ding M, Zheng JZ, et al.. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J Biol Chem 2002; 277: 31963–31971.

    CAS  PubMed  Google Scholar 

  34. Papapetropoulos A, Fulton D, Lin MI, et al. Vanadate is a potent activator of endothelial nitric-oxide synthase: evidence for the role of the serine/threonine kinase Akt and the 90-kDa heat shock protein. Mol Pharmacol 2004; 65: 407–415.

    Article  CAS  PubMed  Google Scholar 

  35. Weinberg ED. The role of iron in cancer. Eur J Cancer Prev 1996; 5: 19–36.

    CAS  PubMed  Google Scholar 

  36. Hsing AW, McLaughlin JK, Olsen JH, Mellemkjar L, Wacholder S, Fraumeni JF Jr. Cancer risk following primary hemochromatosis: a population-based cohort study in Denmark. Int J Cancer 1995; 60: 160–162.

    Article  CAS  PubMed  Google Scholar 

  37. Stevens RG, Graubard BI, Micozzi MS, Neriishi K, Blumberg BS. Moderate elevation of body iron level and increased risk of cancer occurrence and death. Int J Cancer 1994; 56: 364–369.

    CAS  PubMed  Google Scholar 

  38. Lovejoy DB, Richardson DR. Iron chelators as anti-neoplastic agents: current developments and promise of the PIH class of chelators. Curr Med Chem 2003; 10: 1035–1049.

    Article  CAS  PubMed  Google Scholar 

  39. Tam TF, Leung-Toung R, Li W, Wang Y, Karimian K, Spino M. Iron chelator research: past, present, and future. Curr Med Chem 2003; 10: 983–995.

    Article  CAS  PubMed  Google Scholar 

  40. Chan DA, Sutphin PD, Denko NC, Giaccia AJ. Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. J Biol Chem 2002; 277: 40112–40117.

    CAS  PubMed  Google Scholar 

  41. Weng C, Li Y, Xu D, Shi Y, Tang H.Specific Cleavage of Mcl-1 by Caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem 2005; 280: 10491–10500.

    CAS  PubMed  Google Scholar 

  42. Minet E, Michel G, Remacle J, Michiels C. Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis. Int J Mol Med 2000; 5: 253–259.

    CAS  PubMed  Google Scholar 

  43. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001; 7: 345–350.

    Article  CAS  PubMed  Google Scholar 

  44. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 2004; 57: 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  45. Piret JP, Mottet D, Raes M, Michiels C. Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol 2002; 64: 889–892.

    Article  CAS  PubMed  Google Scholar 

  46. Xue ZH, Jiang Y, Yu Y, Wang LS, Chen GQ, Zhao Q. Metavanadate suppresses desferrioxamine-induced leukemic cell differentiation with reduced hypoxia inducible factor-1alpha protein. Bioche. Biophys. Res. Communic.. 2005; 332: 1140–1147.

    Article  CAS  PubMed  Google Scholar 

  47. Haendeler J, Zeiher AM, Dimmeler S. Nitric oxide and apoptosis. Vitam Horm 1999; 57: 49–77.

    CAS  PubMed  Google Scholar 

  48. Levonen AL, Patel RP, Brookes P, et al. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases. Antioxid Redox Signal 2001; 3: 215–229.

    Article  CAS  PubMed  Google Scholar 

  49. Kotamraju S, Tampo Y, Kalivendi SV, Joseph J, Chitambar CR, Kalyanaraman B. Nitric oxide mitigates peroxide-induced iron-signaling, oxidative damage, and apoptosis in endothelial cells: role of proteasomal function? Arch Biochem Biophys 2004; 423: 74–80.

    Article  CAS  PubMed  Google Scholar 

  50. Gumpricht E, Dahl R, Yerushalmi B, Devereaux MW, Sokol RJ. Nitric oxide ameliorates hydrophobic bile acid-induced apoptosis in isolated rat hepatocytes by non-mitochondrial pathways. J Biol Chem 2002; 277: 25823–25830.

    Article  CAS  PubMed  Google Scholar 

  51. Maejima Y, Adachi S, Ito H, Nobori K, Tamamori-Adachi M, Isobe M. Nitric oxide inhibits ischemia/reperfusion-induced myocardial apoptosis by modulating cyclin A-associated kinase activity. Cardiovasc Res 2003; 59: 308–320.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.-Q. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, M., Song, LP., Jiang, Y. et al. Hypoxia-mimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1α independent mechanisms. Apoptosis 11, 67–77 (2006). https://doi.org/10.1007/s10495-005-3085-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-3085-3

Keywords

Navigation