Skip to main content
Log in

Caspase-independent apoptosis is activated by diazepam-induced mitotic failure in HeLa cells, but not in human primary fibroblasts

  • Published:
Apoptosis Aims and scope Submit manuscript

DZ, a benzodiazepine known to affect centrosome separation at prophase, leads to a higher degree of mitotic arrest in HeLa cells than in primary human fibroblasts. In fact, differently from fibroblasts, which undergo a transient block in prophase-to-prometaphase transition, a high proportion of tumor cells attempt to escape from the DZ-imposed mitotic block, fail to undergo complete mitosis and die by mitotic failure. DZ-treated samples showed certain biochemical hallmarks of apoptosis, such as induction of the proapototic Bax protein, mitochondrial alterations assessed by JC-1 staining and TEM analysis, PARP cleavage, and DNA fragmentation. However, in DZ-treated cells, we observed a very low or absent caspase activation as shown by immunofluorescence and immunoblot experiments with antibodies directed to activated caspases and by staining with the pancaspase inhibitor FITC-VAD-FMK. Experiments on mitochondrial depolymerization and apoptosis induction carried out in the presence of specific inhibitors of caspase-2 and caspase-3/7 indicated a caspase-independent apoptotic process induced by DZ. Accordingly, TEM analysis of treated cells revealed ultrastructural features resembling those reported for caspase-independent apoptosis. In conclusion, we hypothesize that HeLa cells override the prophase block imposed by DZ, producing a high rate of aberrant pro-metaphases, which, in turn, activates caspase-independent, apoptosis-like mitotic catastrophe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000; 69(2): 17–45.

    Article  Google Scholar 

  2. Leist M, Jaattela M. Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2: 589–598.

    PubMed  Google Scholar 

  3. Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 2004; 23: 2746–2756.

    PubMed  Google Scholar 

  4. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    PubMed  Google Scholar 

  5. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483–487. Erratum in: Nature 407: 767.

    Google Scholar 

  6. Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003; 8: 413–450.

    Article  PubMed  Google Scholar 

  7. Cogswell JP, Brown CE, Bisi JE, Neill SD. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ 2000; 11: 615–623.

    PubMed  Google Scholar 

  8. Sato N, Mizumoto K, Nakamura M, et al. A possible role for centrosome overduplication in radiation-induced cell death. Oncogene 2000; 19: 5281–5290.

    Article  PubMed  Google Scholar 

  9. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: A molecular definition. Oncogene 2004; 23: 2825–2837.

    Article  PubMed  Google Scholar 

  10. Swanson PE, Carroll SB, Zhang XF, Mackey MA. Spontaneous premature chromosome condensation, micronucleus formation, and non-apoptotic cell death in heated HeLa S3 cells. Ultrastructural observations. Am J Pathol 1995; 146: 963–971.

    PubMed  Google Scholar 

  11. Ianzini F, Mackey MA. Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. Int J Radiat Biol 1997; 72: 409–421.

    Article  PubMed  Google Scholar 

  12. Tsvetkov L, Xu X, Li J, Stern DF. Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. J Biol Chem 2003; 278: 8468–8475.

    Article  PubMed  Google Scholar 

  13. Chehab NH, Malikzay A, Appel M, Halazonetis TD. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 2000; 14: 278–288.

    PubMed  Google Scholar 

  14. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS. Piwnica-Worms. Mitotic and G2 checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 1997; 277: 1501–1505.

    Article  PubMed  Google Scholar 

  15. Seo GJ, Kim SE, Lee YM, Lee JW, Lee JR, Hahn MJ, Kim ST. Determination of substrate specificity and putative substrates of Chk2 kinase. Biochem Biophys Res Commun 2003; 304: 339–343.

    Article  PubMed  Google Scholar 

  16. Broker LE, Huisman C, Ferreira CG, Rodriguez JA, Kruyt FA, Giaccone G. Late activation of apoptotic pathways plays a negligible role in mediating the cytotoxic effects of discodermolide and epothilone B in non-small cell lung cancer cells. Cancer Res 2002; 62: 4081–4088.

    PubMed  Google Scholar 

  17. Huisman C, Ferreira CG, Broker LE, et al. Paclitaxel triggers cell death primarily via caspase-independent routes in the non-small cell lung cancer cell line NCI-H460. Clin Cancer Res 2002; 8: 596–606.

    PubMed  Google Scholar 

  18. Nabha SM, Mohammad RM, Dandashi MH, et al. Combretastatin-A4 prodrug induces mitotic catastrophe in chronic lymphocytic leukemia cell line independent of caspase activation and poly(ADP-ribose) polymerase cleavage. Clin Cancer Res 2002; 8: 2735–2741.

    PubMed  Google Scholar 

  19. Broker LE, Huisman C, Span SW, Rodriguez JA, Kruyt FA, Giaccone G. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 2004; 64: 27–30.

    PubMed  Google Scholar 

  20. Kagawa S, Gu J, Honda T, McDonnell TJ, Swisher SG, Roth JA, Fang B. Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not cell death. Clin Cancer Res 2001; 7: 1474–1480.

    PubMed  Google Scholar 

  21. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.

    PubMed  Google Scholar 

  22. Volbracht C, Leist M, Kolb SA, Nicotera P. Apoptosis in caspase-inhibited neurons. Mol Med 2001; 7: 36–48.

    PubMed  Google Scholar 

  23. Lockshin RA, Zakeri Z. Caspase-independent cell death? Oncogene 2004; 23: 2766–2773.

    Article  PubMed  Google Scholar 

  24. Byck R. Drugs and the treatment of psychiatric disorders. In: Goodman LS, Gilman A, eds The Pharmacological Basis of Therapeutics, New York: Edn. Mcmillan. 1975; 189–192.

  25. Andersson L., Letho V, Stenman S, Bodley RA, Virtamen I. Diazepam induces mitotic arrest at prometaphase by inhibiting centriolar separation. Nature 1981; 291: 247–248.

    Article  PubMed  Google Scholar 

  26. Lafi A, Parry JM. A study of the induction of aneuploidy and chromosome aberrations after diazepam, medazepam, midazolam and bromazepam treatment. Mutagenesis 1988; 3: 23–27.

    PubMed  Google Scholar 

  27. Antoccia A, Degrassi F, Battistoni A, Ciliutti P, Tanzarella C. In vitro micronucleus test with kinetochore staining: Evaluation of test performance. Mutagenesis 1991; 6: 319–324.

    PubMed  Google Scholar 

  28. Sbrana I, Di Sibio A, Lomi A, Scarcelli V. C-mitosis and numerical chromosome aberration analyses in human lymphocytes: 10 known or suspected spindle poisons. Mutat Res 1993; 287: 57–70.

    PubMed  Google Scholar 

  29. Izzo M, Antoccia A, Degrassi F, Tanzarella C. Immunofluorescence analysis of diazepam-induced mitotic apparatus anomalies and chromosome loss in Chinese hamster cells. Mutagenesis 1998; 13: 445–451.

    PubMed  Google Scholar 

  30. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. (1993). A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197: 40–45.

    Google Scholar 

  31. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 1983; 11: 1475–1489.

    PubMed  Google Scholar 

  32. Doxsey S. Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2001; 2: 688–698.

    Article  PubMed  Google Scholar 

  33. Lane HA, Nigg EA. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 1996; 135: 1701–1713.

    Article  PubMed  Google Scholar 

  34. Shackelford RE, Kaufmann WK, Paules RS. Cell cycle control checkpoint mechanism and genotoxic stress. Environ Health Persp 1999; 107: 5–11.

    Google Scholar 

  35. Woods JA, Hadfield JA, Pettit GR, Fox BW, McGown AT. (1995). The interaction with tubulin of a series of stilbenes based on combretastatin A-4. Br J Cancer 71: 705–711.

    Google Scholar 

  36. Wassmann K, Benezra R. Mitotic checkpoints: From yeast to cancer. Curr Opin Genet Dev 2001; 11: 83–90.

    Article  PubMed  Google Scholar 

  37. Wassmann K, Liberal V, Benezra R. Mad2 phosphorylation regulates its association with Mad1 and the APC/C. EMBO J 2003; 22: 797–806.

    Article  PubMed  Google Scholar 

  38. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999; 286: 971–974.

    Article  PubMed  Google Scholar 

  39. Lens SM, Wolthuis RM, Klompmaker R, et al. Kauw J, Agami R, Brummelkamp T, Kops G, Medema RH. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J 2003; 22: 2934–2947.

    Article  PubMed  Google Scholar 

  40. Blajeski AL, Phan VA, Kottke TJ, Kaufmann SH. G(1) and G(2) cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest 2002; 110: 91–99.

    Article  PubMed  Google Scholar 

  41. Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T. Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol 2003; 163: 1109–1116.

    PubMed  Google Scholar 

  42. Bhalla KN Microtubule-targeted anticancer agents and apoptosis. Oncogene 2003; 22: 9075–9086.

    Article  PubMed  Google Scholar 

  43. Castedo M, Perfettini JL,Roumier T, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 2004; 23: 4362–4370.

    Article  PubMed  Google Scholar 

  44. Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 2002; 40: 475–486.

    Article  PubMed  Google Scholar 

  45. Patterson SD, Spahr CS, Daugas E, et al. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ 2000; 7: 137–144.

    Article  PubMed  Google Scholar 

  46. Miccoli L, Poirson-Bichat F, et al. Potentiation of lonidamine and diazepam, two agents acting on mitochondria, in human glioblastoma treatment. J Natl Cancer Inst 1998; 90: 1400–1406.

    Article  PubMed  Google Scholar 

  47. Decaudin D, Castedo M, Nemati F, et al. Peripheral benzodiazepine receptor ligands reverse apoptosis resistance of cancer cells in vitro and in vivo. Cancer Res 2002; 62: 1388–1393.

    PubMed  Google Scholar 

  48. Kleinerman RA, Brinton LA, Hoover R, Fraumeni JF Jr. Diazepam use and progression of breast cancer. Cancer Res 1984; 44: 1223–1225.

    PubMed  Google Scholar 

  49. Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 2000; 92: 1042–1053.

    PubMed  Google Scholar 

  50. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene 2004; 23: 2881–2890.

    Article  PubMed  Google Scholar 

  51. Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 2004; 23: 2785–2796.

    Article  PubMed  Google Scholar 

  52. Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 273: 9357–9360.

    Article  PubMed  Google Scholar 

  53. Chelli B, Lena A, Vanacore R, et al. Peripheral benzodiazepine receptor ligands: Mitochondrial transmembrane potential depolarization and apoptosis induction in rat C6 glioma cells. Bioch Pharmacol 2004; 68: 125–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Antoccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, I., Antoccia, A., Crateri, P. et al. Caspase-independent apoptosis is activated by diazepam-induced mitotic failure in HeLa cells, but not in human primary fibroblasts. Apoptosis 10, 909–920 (2005). https://doi.org/10.1007/s10495-005-2948-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-2948-y

Keywords

Navigation