Skip to main content
Log in

Jararhagin, a snake venom metalloproteinase, induces a specialized form of apoptosis (anoikis) selective to endothelial cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Jararhagin is a snake venom metalloproteinase (SVMP) from Bothrops jararaca involved in several hemostatic and inflammatory disorders that occur in human envenomings. In this study, we evaluated the effect of jararhagin on endothelial cells (tEnd). The exposure of tEnd to jararhagin (20 and 40μg/ml) resulted in apoptosis with activation of pro-caspase-3 and alterations in the ratio between Bax/Bcl-xL. We observed that apoptosis was followed by decrease of cell viability and the loss of cell adhesion. Jararhagin induced changes in cell shape with a decrease in cell spreading, rounding up and detachment. This was accompanied by a rearrangement of actin network and a decrease in FAK association to actin and in tyrosine phosphorylated proteins. Morphological alterations and apoptosis were abolished when jararhagin catalytic activity was inhibited, indicating the importance of catalysis. Treatment of murine peritoneal adherent cells or fibroblasts with jararhagin did not result in apoptosis. The data indicate that the pro-apoptotic effect of jararhagin is selective to endothelial cells, interfering with the adhesion mechanisms and inducing anoikis. The present model might be useful for the study of the relationships between the architectural changes in the cytoskeleton and the complex phenomenon named anoikis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutierrez JM, Rucavado A. Snake venom metalloproteinases: Their role in the pathogenesis of local damage. Biochemie 2000; 82: 841–850.

    Article  Google Scholar 

  2. Warrell DA. The global problem of snake bite: Its prevention and treatment In: Gopalakrishnakone P, Tan CK, eds. Recent Advances in Toxinology Research. Singapore: National University of Singapore 1992: 121–153.

  3. Paine MJ, Desmond HP, Theakston RD, Crampton JM. Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem 1992; 267: 22869–22876.

    PubMed  Google Scholar 

  4. Laing G, Moura-Da-Silva AM. Jararhagin and its multiple effects on hemostasis. Toxicon, (in press).

  5. Escalante T, Nunez J, Moura da Silva AM, Rucavado A, Theakston RD, Gutierrez JM. Pulmonary hemorrhage induced by jararhagin, a metalloproteinase from Bothrops jararaca snake venom. Toxicol Appl Pharmacol 2003; 193: 17–28.

    Article  PubMed  Google Scholar 

  6. De Luca M, Ward CM, Ohmori K, Andrews RK, Berndt MC. Jararhagin and jaracetin: Novel snake venom inhibitors of the integrin collagen receptor, alpha 2 beta 1. Biochem Biophys Res Commun 1995; 206: 570–576.

    Article  PubMed  Google Scholar 

  7. Kamiguti AS, Hay CR, Zuzel M. Inhibition of collagen-induced platelet aggregation as the result of cleavage of alpha 2 beta 1-integrin by the snake venom metalloproteinase jararhagin. Biochem J 1996; 320: 635–641.

    PubMed  Google Scholar 

  8. Moura-da-Silva AM, Marcinkiewicz C, Marcinkiewicz M, Niewiarowski S. Selective recognition of alpha2beta1 integrin by jararhagin, a Metalloproteinase/disintegrin from Bothrops jararaca venom. Thromb Res 2001; 102: 153–159.

    Article  PubMed  Google Scholar 

  9. Moura da Silva AM, Della-Casa MS, David AS, et al. Evidence for heterogeneous forms of the snake venom metalloproteinase jararhagin: A factor contributing to snake venom variability. Arch Biochem Biophys 2003; 409: 395–401.

    Article  PubMed  Google Scholar 

  10. Bussolino F, De Rossi M, Sica A, et al. Murine endothelioma cell lines transformed by polyoma middle T oncogene as target for and producers of cytokines. J Immunol 1991; 147: 2122–2129.

    PubMed  Google Scholar 

  11. Clissa PB, Laing GD, Theakston RDG, Mota I, Taylor MJ, Moura-Da-Silva AM. The effect of jararhagin, a metalloproteinase from Bothrops jararaca venom, on pro-inflammatory cytokines released by murine peritoneal adherent cells. Toxicon 2001; 39: 1567–1573.

    Article  PubMed  Google Scholar 

  12. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139: 271–279.

    Article  PubMed  Google Scholar 

  13. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.

    PubMed  Google Scholar 

  14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    PubMed  Google Scholar 

  15. Lukashev ME, Werb Z. ECM signalling: Orchestrating cell behaviour and misbehaviour. Trends Cell Biol 1998; 8: 437–441.

    Article  PubMed  Google Scholar 

  16. Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 2002; 91: 877–887.

    Article  PubMed  Google Scholar 

  17. Meredith JE, Jr, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell 1993; 4: 953–961.

    PubMed  Google Scholar 

  18. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. Cell Biol 1994; 124: 619–626.

    Article  Google Scholar 

  19. Ingber DE. Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton. J Cell Sci 1993; 104: 613–627.

    PubMed  Google Scholar 

  20. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260: 1124–1127.

    PubMed  Google Scholar 

  21. Zhang X, Minale L, Zampella A, Smith CD. Microfilament depletion and circumvention of multiple drug resistance by sphinxolides. Cancer Res 1997; 57: 3751–3758.

    PubMed  Google Scholar 

  22. Korichneva I, Hammerling U. F-actin as a functional target for retro-retinoids: A potential role in anhydroretinol-triggered cell death. J Cell Sci 1999; 112: 2521–2528.

    PubMed  Google Scholar 

  23. Flusberg DA, Numaguchi Y, Ingber DE. Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 2001; 12: 3087–3094.

    PubMed  Google Scholar 

  24. Levkau B, Herren B, Koyama H, Ross R, Raines EW. Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J Exp Med 1998; 187: 579–586.

    Article  PubMed  Google Scholar 

  25. Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 2001; 29: 684–688.

    Article  PubMed  Google Scholar 

  26. You WK, Seo HJ, Chung KH, Kim DS. A novel metalloprotease from Gloydius halys venom induces endothelial cell apoptosis through its protease and disintegrin-like domains. J Biochem 2003; 134: 739–749.

    Article  PubMed  Google Scholar 

  27. Wu WB, Huang TF. Activation of MMP-2, cleavage of matrix proteins, and adherens junctions during a snake venom metalloproteinase-induced endothelial cell apoptosis. Exp Cell Res 2003; 288: 143–157.

    Article  PubMed  Google Scholar 

  28. Diaz C, Valverde L, Brenes O, Rucavado A, Gutierrez JM. Characterization of events associated with apoptosis/anoikis induced by snake venom metalloproteinase BaP1 on human endothelial cells. J Cell Biochem 2005; 94: 520–528.

    Article  PubMed  Google Scholar 

  29. Grossmann J. Molecular mechanisms of ‘‘detachment-induced apoptosis–Anoikis”. Apoptosis 2002; 7: 247–260.

    Article  PubMed  Google Scholar 

  30. Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 1999; 9: 1441–1447.

    Article  PubMed  Google Scholar 

  31. Matsuno H, Yudoh K, Watanabe Y, Nakazawa F, Aono H, Kimura T. Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J Rheumatol 2001; 28: 22–28.

    PubMed  Google Scholar 

  32. Bode W, Gomis-Ruth FX, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 1993; 331: 134–140.

    Article  PubMed  Google Scholar 

  33. Bjarnason JB, Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmac Ther 1994; 62: 325–372.

    Article  Google Scholar 

  34. Lomonte B, Gutierrez JM, Borkow G, Ovadia M, Tarkowski A, Hanson LA. Activity of hemorrhagic metalloproteinase BaH-1 and myotoxin II from Bothrops asper snake venom on capillary endothelial cells in vitro. Toxicon 1994; 32: 505–510.

    Article  PubMed  Google Scholar 

  35. Araki S, Masuda S, Maeda H, Ying MJ, Hayashi H. Involvement of specific integrins in apoptosis induced by vascular apoptosis-inducing protein 1. Toxicon 2002; 40: 535–542.

    Article  PubMed  Google Scholar 

  36. Zigrino P, Kamiguti AS, Eble J, et al. The reprolysin jararhagin, a snake venom metalloproteinase, functions as a fibrillar collagen agonist involved in fibroblast cell adhesion and signaling. J Biol Chem 2002; 277: 40528–40535.

    Article  PubMed  Google Scholar 

  37. Wu WB, Peng HC, Huang TF. Disintegrin causes proteolysis of beta-catenin and apoptosis of endothelial cells. Involvement of cell-cell and cell-ECM interactions in regulating cell viability. Exp Cell Res 2003; 286: 115–127.

    Article  PubMed  Google Scholar 

  38. Hong SY, Lee H, You WK, Chung KH, Kim DS, Song K. The snake venom disintegrin salmosin induces apoptosis by disassembly of focal adhesions in bovine capillary endothelial cells. Biochem Biophys Res Commun 2003; 302: 502–508.

    Article  PubMed  Google Scholar 

  39. Yeh CH, Peng HC, Huang TF. Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta3 antagonist and inducing apoptosis. Blood 1998; 92: 3268–3276.

    PubMed  Google Scholar 

  40. Souza DH, Iemma MR, Ferreira LL, et al. The disintegrin-like domain of the snake venom metalloprotease alternagin inhibits alpha2beta1 integrin-mediated cell adhesion. Arch Biochem Biophys 2000; 384: 341–350.

    Article  PubMed  Google Scholar 

  41. Mariano-Oliveira A, Coelho AL, Terruggi CH, Selistre-de-Araujo HS, Barja-Fidalgo C, De Freitas MS. Alternagin-C, a nonRGD-disintegrin, induces neutrophil migration via integrin signaling. Eur J Biochem 2003; 270: 4799–4808.

    Article  PubMed  Google Scholar 

  42. Cominetti MR, Terruggi CH, Ramos OH, et al. Alternagin-C, a disintegrin-like protein, induces vascular endothelial cell growth factor (VEGF) expression and endothelial cell proliferation in vitro. J Biol Chem 2004; 279: 18247–18255.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Moura-da-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanjoni, I., Weinlich, R., Della-Casa, M.S. et al. Jararhagin, a snake venom metalloproteinase, induces a specialized form of apoptosis (anoikis) selective to endothelial cells. Apoptosis 10, 851–861 (2005). https://doi.org/10.1007/s10495-005-2945-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-2945-1

Keywords

Navigation