Skip to main content
Log in

Decreased apoptosis in polyamine depleted IEC-6 cells depends on Akt-mediated NF-κB activation but not GSK3β activity

  • Published:
Apoptosis Aims and scope Submit manuscript

The PI3-kinase/Akt pathway promotes cell survival in many different cell types including intestinal epithelial cells. Increased AKT activation in polyamine depleted intestinal epithelial cells correlated well with the decrease in TNF-α-induced apoptosis. Increased Akt activation and GSK3β (Ser 9) phosphorylation without significant effect on Bad (Ser136) phosphorylation indicate that Akt-mediated protection is independent of Bad phosphorylation but may depend on GSK3β. Pretreatment of polyamine-depleted cells with LY294002 increased caspase-9 and caspase-3 activation and decreased basal levels of GSK-3β phosphorylation. Inhibition of GSK3β activity using AR-A014418 or lithium chloride or siRNA-mediated downregulation of its expression had no effect on apoptosis. Inhibition of PI3-kinase and over-expression of dominant negative Akt (DN-AKT), significantly increased apoptosis in polyamine depleted cells. DN-Akt expression reversed the protective effect of polyamine depletion on apoptosis. DN-Akt, as well as the PI3-kinase inhibitors, prevented Akt activation and subsequent translocation of NF-κB to the nucleus. Constitutively active Akt (CA-AKT) expression increased resistance to TNF-α-induced apoptosis. Constitutively active-Akt expression increased nuclear staining of NF-κB. Moreover, polyamine depletion of DN-Akt cells prevented basal and TNF-α-induced IκBα phosphorylation. Prevention of NF-κB activation in DN-IκBα-transfected cells increased apoptosis in control cells and restored it in polyamine-depleted cells to control levels. These data indicate that Akt regulates the mitochondrial pathway, preventing activation of caspase-9 and thereby caspase-3 via NF-κB and these effects are independent of GSK-3β activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    PubMed  Google Scholar 

  2. Meier P, Finch A, Evan G. Apoptosis in development. Nature 2000; 407: 796–801.

    Article  PubMed  Google Scholar 

  3. Potten CS. The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice. Cancer Metastasis Rev 1992; 11: 179–195.

    Article  PubMed  Google Scholar 

  4. Pritchard DM, Watson AJ. Apoptosis and gastrointestinal pharmacology. Pharmacol Ther 1996; 72: 149–169.

    Article  PubMed  Google Scholar 

  5. Ray RM, Viar MJ, Yuan Q, Johnson LR. Polyamine depletion delays apoptosis of rat intestinal epithelial cells. Am J Physiol Cell Physiol 2000; 278: C480–C489.

    PubMed  Google Scholar 

  6. Tobias KE, Kahana C. Exposure to ornithine results in excessive accumulation of putrescine and apoptotic cell death in ornithine decarboxylase overproducing mouse myeloma cells. Cell Growth Differ 1995; 10: 1279–1285.

    Google Scholar 

  7. Bhattacharya S, Ray M, Viar MJ, Johnson LR. Polyamines are required for activation of c-Jun NH2-terminal kinase and apoptosis in response to TNF-alpha in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol. 2003; 285: G980–991.

    PubMed  Google Scholar 

  8. Bhattacharya S, Ray RM, Johnson LR. Prevention of TNF-alpha-induced apoptosis in polyamine-depleted IEC-6 cells is mediated through the activation of ERK1/2. Am J Physiol Gastrointest Liver Physiol 2004; 286: G479–G490.

    Article  PubMed  Google Scholar 

  9. Deng W, Wang De-An, Gosmanova E, Johnson LR, Tigyi G. LPA protects intestinal epithelial cells from apoptosis by inhibiting the mitochondrial pathway. Am J Physiol Gastrointest Liver Physiol 2003; 284: G821–G829.

    PubMed  Google Scholar 

  10. Zhang HM, Rao JN, Guo X, et al.. Akt kinase activation blocks apoptosis in intestinal epithelial cells by inhibiting caspase-3 after polyamine depletion. J Biol Chem 2004; 279: 22539–47.

    Article  PubMed  Google Scholar 

  11. Bellacosa A, Testa J, Staal S, Tsichlis P. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991; 254: 274–277.

    PubMed  Google Scholar 

  12. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    Article  PubMed  Google Scholar 

  13. Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr Biol 1997; 7: 261–269.

    Article  PubMed  Google Scholar 

  14. Vanhaesebroeck B, Alessi DR. The PI3K-PKD connection: more than just a road tp PKB. Biochem J 2000; 346: 561–576.

    Article  PubMed  Google Scholar 

  15. Scheid MP, Marignani PA, Wooggett Jr. Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol 2002; 22: 6247–6260.

    Article  PubMed  Google Scholar 

  16. Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997; 275: 661–665.

    Article  PubMed  Google Scholar 

  17. Goswami R, Kilkus J, Dawson SA, Dawson G. Overexpression of Akt (protein kinase B) confers protection against apoptosis and prevents formation of ceramide in response to pro-apoptotic stimuli. J Neurosci Res 1999; 57: 884–893.

    Article  PubMed  Google Scholar 

  18. Kennedy SG, Wagner AJ, Conzen SD, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 1997; 11: 701–713.

    PubMed  Google Scholar 

  19. Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 1997; 17: 1595–1606.

    PubMed  Google Scholar 

  20. Lee JW, Juliano RL. alpha5 beta1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. Mol Biol Cell 2000; 11: 1973–1987.

    PubMed  Google Scholar 

  21. Fujio Y, Walsh K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 1999; 274: 16349–16354.

    Article  PubMed  Google Scholar 

  22. Hermann C, Assmus B, Urbich C, Zeiher AM, Dimmeler S. Insulin-mediated stimulation of protein kinase Akt: A potent survival signaling cascade for endothelial cells. Arterioscler Thromb Vasc Biol 2000; 20: 402–409.

    PubMed  Google Scholar 

  23. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  PubMed  Google Scholar 

  24. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  PubMed  Google Scholar 

  25. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    Article  PubMed  Google Scholar 

  26. Cardone MH, Roy N, Stennick HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    Article  PubMed  Google Scholar 

  27. Masuyama N, Oishi K, Mori Y, Ueno T, Takahama Y, Gotoh Y. Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J Biol Chem 2001; 276: 32799–32805.

    Article  PubMed  Google Scholar 

  28. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999; 401: 82–85.

    Article  PubMed  Google Scholar 

  29. Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 1998; 273: 19929–19932.

    Article  PubMed  Google Scholar 

  30. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90.

    Article  PubMed  Google Scholar 

  31. Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 1999; 19: 5800–5810.

    PubMed  Google Scholar 

  32. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001; 15: 1406–1418.

    Article  PubMed  Google Scholar 

  33. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings, BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  PubMed  Google Scholar 

  34. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.

    Google Scholar 

  35. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev Immunol 2000; 16: 621–63.

    Article  Google Scholar 

  36. Bours V, Bentires-Alj M, Hellin AC, et al. Nuclear factor-kappa B, cancer, and apoptosis. Biochem Pharmacol 2000; 60: 1085–1089.

    Article  PubMed  Google Scholar 

  37. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS Jr, Mayo MW. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 2000; 20: 1626–1638.

    Article  PubMed  Google Scholar 

  38. Pfeffer LM, Yang CH, Murti A, et al.. Polyamine depletion induces rapid NF-kappa B activation in IEC-6 cells. J Biol Chem 2001; 276: 45909–45913.

    Article  PubMed  Google Scholar 

  39. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309–1312.

    PubMed  Google Scholar 

  40. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513–519.

    PubMed  Google Scholar 

  41. Wang CY, Guttridge DC, Mayo MW, Baldwin AS, Jr. NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 1999; 19: 5923–5929.

    PubMed  Google Scholar 

  42. Yu C, Minemoto Y, Zhang J, et al. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 2004; 13: 329–40.

    Article  PubMed  Google Scholar 

  43. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–628.

    Article  PubMed  Google Scholar 

  44. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999; 13: 382–387.

    PubMed  Google Scholar 

  45. Yuan Q, Ray RM, Johnson LR. Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome c. Am J Physiol Cell Physiol 2002; 282: C1290–1297.

    Google Scholar 

  46. Quaroni A, Wands J, Trelstad RL, Isselbacher KJ. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol 1979; 80: 248–265.

    Article  PubMed  Google Scholar 

  47. Ray RM, Patel A, Viar MJ, et al. RhoA inactivation inhibits cell migration but does not mediate the effects of polyamine depletion. Gastroenterology 2002; 123: 196–205.

    Article  PubMed  Google Scholar 

  48. Bhat R, Xue Y, Berg S, et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 2003; 278: 45937–45945.

    Article  PubMed  Google Scholar 

  49. Juhaszova M, Zoroz DB, Kim SH, et al. Glycogen synthase kinase-3b mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 2004; 113: 1535–1549.

    Article  PubMed  Google Scholar 

  50. Zou T, Rao JN, Guo X, et al. NF-kappaB-mediated IAP expression induces resistance of intestinal epithelial cells to apoptosis after polyamine depletion. Am J Physiol Cell Physiol 2004; 286: C1009–18.

    Article  PubMed  Google Scholar 

  51. Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three Akts Genes Dev 1999; 13: 2905–2927.

    Article  PubMed  Google Scholar 

  52. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    Article  PubMed  Google Scholar 

  53. Kops GJ, Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 1999; 398: 630–634.

    Article  PubMed  Google Scholar 

  54. Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273: 32377–32379.

    Article  PubMed  Google Scholar 

  55. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 2001; 21: 893–901.

    Article  PubMed  Google Scholar 

  56. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 2001; 276: 18934–18940.

    Article  PubMed  Google Scholar 

  57. Yang E, Zha J, Jockel J, Boise LM, Thompson, CB, Korsmeyer, SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80: 285–291.

    Article  PubMed  Google Scholar 

  58. Yuan ZQ, Feldman RI, Sun M, et al. Inhibition of JNK by cellular stress- and tumor necrosis factor alpha-induced AKT2 through activation of the NF kappa B pathway in human epithelial Cells. J Biol Chem 2002; 277: 29973–29982.

    Article  PubMed  Google Scholar 

  59. Vanhaesebroeck B, Waterfield M. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 1999; 253: 239–254.

    Article  PubMed  Google Scholar 

  60. Schmidt M, Hovelmann S, Beckers TL. A novel form of constitutively active farnesylated Akt1 prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis. British Journal of Cancer 2002; 87: 924–932.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Ray, R.M. & Johnson, L.R. Decreased apoptosis in polyamine depleted IEC-6 cells depends on Akt-mediated NF-κB activation but not GSK3β activity. Apoptosis 10, 759–776 (2005). https://doi.org/10.1007/s10495-005-2943-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-2943-3

Keywords

Navigation