Skip to main content

Advertisement

Log in

Nuclear BAG-1 expression inhibits apoptosis in colorectal adenoma-derived epithelial cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

BAG-1 is an anti-apoptotic protein that is frequently deregulated in a variety of malignancies including colorectal cancer. There are three isoforms: BAG-1L is located in the nucleus, BAG-1M and BAG-1S are located both in the nucleus and the cytoplasm. In colon cancer, the expression of nuclear BAG-1 is associated with poorer prognosis and is potentially a useful predictive factor for distant metastasis. However, the function of BAG-1 in colonic epithelial cells has not been studied. Having previously shown a predominant nuclear localisation of BAG-1 in adenoma-derived cell lines,1 we wanted to determine the function of nuclear BAG-1 in these non-tumourigenic cells, to identify whether nuclear BAG-1 was implicated in tumour progression in the colon. In the current report we established that nuclear BAG-1 inhibits apoptosis in a colorectal adenoma-derived cell line. We demonstrate that apoptosis induced by γ -radiation or the vitamin D analogue EB1089 in the non-tumourigenic human colorectal adenoma-derived S/RG/C2 cell line, was preceded by a decrease in nuclear and an increase in cytoplasmic BAG-1 expression. This change in subcellular localisation of BAG-1 was due to the redistribution of the BAG-1M isoform. In addition, we have shown that the maintenance of high nuclear BAG-1 through enforced expression of the nuclear localised BAG-1L isoform enhanced cellular survival after γ -radiation or exposure to EB1089. Furthermore the expression of cytoplasmic BAG-1S isoform fused with a nuclear localisation signal protected against γ -radiation induced apoptosis. This demonstrates that nuclear localisation of the BAG-1 protein confers a survival advantage in colorectal adenoma-derived cells and that nuclear BAG-1 could potentially be an important survival factor in colorectal carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arhel NJ, Packham G, Townsend PA, et al The retinoblastoma protein interacts with BAG-1 in human colonic adenoma and carcinoma derived cell lines. Int J Cancer2003; 106 364–371

    CAS  PubMed  Google Scholar 

  2. Takayama S, Sato T, Krajewski S, et al Cloning and functional analysis of BAG-1: A novel Bcl-2-binding protein with anti-cell death activity. Cell1995; 80 279–284

    CAS  PubMed  Google Scholar 

  3. Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G. BAG-1: A multifunctional regulator of cell growth and survival. Biochim Biophys Acta2003; 603(2):83–98

    Google Scholar 

  4. Takayama S, Kochel K, Irie S, et al Cloning of cDNAs encoding the human BAG1 protein and localisation of the human BAG1 gene to chromosome 9p12. Genomics1996; 35 494–498

    CAS  PubMed  Google Scholar 

  5. Packham G, Brimmell M, Cleveland JL. Mammalian cellsexpress two differently localized BAG-1 isoforms generated by alternative translation initiation. Biochem J1997; 328(Pt 3): 807–813.

    CAS  PubMed  Google Scholar 

  6. Yang X, Chernenko G, Hao Y, et al Human BAG-1/RAP46 protein is generated as four isoforms by alternative translation initiation and overexpressed in cancer cells. Oncogene1998; 17 981–989

    CAS  PubMed  Google Scholar 

  7. Takayama S, Krajewski S, Krajewska M, et al Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res1998; 58 3116–3131

    CAS  PubMed  Google Scholar 

  8. Brimmell M, Burns JS, Munson P, et al High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers. Br J Cancer1999; 81(6): 1042–1051

    CAS  PubMed  Google Scholar 

  9. Knee DA, Froesch BA, Nuber U, Takayama S, Reed JC. Structure-function analysis of BAG-1 proteins. Effects on androgen receptor transcriptional activity. J Biol Chem2001; 276 12718–12724

    CAS  PubMed  Google Scholar 

  10. Cutress RI, Townsend PA, Sharp A, et al The nuclear BAG-1 isoform, BAG-1L, enhances oestrogen-dependent transcription. Oncogene2003; 22 4973–4982.

    CAS  PubMed  Google Scholar 

  11. Bardelli A, Longati P, Albero D, et al HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J1996; 15 6205–6212

    CAS  PubMed  Google Scholar 

  12. Wang HG, Takayama S, Rapp UR, Reed JC. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci USA1996; 93 7063–7068

    CAS  PubMed  Google Scholar 

  13. Song J, Takeda M, Morimoto RI. Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol2001; 3: 276–282

    CAS  PubMed  Google Scholar 

  14. Hohfeld J, Jentsch S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J1997; 16: 6209–6216.

    Article  PubMed  Google Scholar 

  15. Zeiner M, Niyaz Y, Gehring U. The hsp70-associating protein Hap46 binds to DNA and stimulates transcription. Proc Natl Acad Sci USA1999; 96: 10194–10199

    CAS  PubMed  Google Scholar 

  16. Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G. BAG-1 prevents stress-induced long-term growth inhibition in breast cancer cells via a chaperone-dependent pathway. Cancer Res2003; 63: 4150–4157.

    CAS  PubMed  Google Scholar 

  17. Schneikert J, Hubner S, Martin E, Cato AC. A nuclear action of the eukaryotic cochaperone RAP46 in downregulation of glucocorticoid receptor activity. J Cell Biol1999; 146 929–940

    CAS  PubMed  Google Scholar 

  18. Kermer P, Krajewska M, Zapata JM, et al Bag1 is a regulator and marker of neuronal differentiation. Cell Death Differ2002; 4 405–413

    Google Scholar 

  19. Matsuzawa S, Takayama S, Froesch BA, Zapata JM, Reed JC. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: Suppression by BAG-1. EMBO J1998; 10 2736–2747

    Google Scholar 

  20. Lin J, Hutchinson L, Gaston SM, Raab G, Freeman MR. BAG-1 is a novel cytoplasmic binding partner of the membrane form of heparin-binding EGF-like growth factor: A unique role for proHB-EGF in cell survival regulation. J Biol Chem2001; 276: 30127–30132

    CAS  PubMed  Google Scholar 

  21. Sharp A, Crabb SJ, Cutress RI, Brimmell M, Wang XH, Packham G, Townsend PA. BAG-1 in carcinogenesis. Expert Rev Mol Med2004; 1–15

  22. Yang X, Hao Y, Ding Z, Pater A. BAG-1 promotes apoptosis induced by N-(4-hydroxyphenyl)retinamide in human cervical carcinoma cells. Exp Cell Res2000; 256 491–499

    CAS  PubMed  Google Scholar 

  23. Kudoh M, Knee DA, Takayama S, Reed JC. Bag1 proteins regulate growth andsurvival of ZR-75-1 human breast cancer cells. Cancer Res2002; 62: 1904–1909

    CAS  PubMed  Google Scholar 

  24. Kikuchi R, Noguchi T, Takeno S, Funada Y, Moriyama H, Uchida Y. Nuclear BAG-1 expression reflects malignant potential in colorectal carcinomas. Br J Cancer2002; 87: 1136–1139

    CAS  PubMed  Google Scholar 

  25. Paraskeva C, Finerty S, Mountford RA, Powell SC. Specific cytogenetic abnormalities in two new human colorectal adenoma-derived epithelial cell lines. Cancer Res1989; 49: 1282–1286

    CAS  PubMed  Google Scholar 

  26. Williams AC, Browne SJ, Yeudal WA, et al Molecular events including p53 and k-ras alterations in the in vitro progression of a human colorectal adenoma cell line to an adenocarcinoma. Oncogene1993; 8 3063–3072

    CAS  PubMed  Google Scholar 

  27. Henderson BR, Eleftheriou A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp Cell Res 2000; 256 213–224

    CAS  PubMed  Google Scholar 

  28. Bracey TS, Miller JC, Preece A, Paraskeva C. Gamma-radiation-induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene1995; 12; 2391–2396

    Google Scholar 

  29. Diaz GD, Paraskeva C, Thomas MG, Binderup L, Hague A. Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res2000; 60 2304–2312

    CAS  PubMed  Google Scholar 

  30. Guzey M, Takayama S, Reed JC. BAG1L enhances trans-activation function of the vitamin D receptor. J Biol Chem2000; 275: 40749–40756

    CAS  PubMed  Google Scholar 

  31. Witcher M, Yang X, Pater A, Tang SC. BAG-1 p50 isoform interacts with the vitamin D receptor and its cellular overexpression inhibits the vitamin D pathway. Exp Cell Res2001; 265(1): 167–173

    CAS  PubMed  Google Scholar 

  32. Cutress RI, Townsend PA, Brimmell M, Bateman AC, Hague A, Packham G. BAG-1 expression and function in human cancer. Br J Cancer2002; 87 834–839.

    CAS  PubMed  Google Scholar 

  33. Cato AC, Mink S. BAG-1 family of cochaperones in the modulation of nuclear receptor action. J Steroid Biochem Mol Biol2001; 78379–388.

    Google Scholar 

  34. Kullmann M, Schneikert J, Moll J, et al RAP46 is a negative regulator of glucocorticoid receptor action and hormone-induced apoptosis. J Biol Chem1998; 273 14620–14625

    CAS  PubMed  Google Scholar 

  35. Froesch BA, Takayama S, Reed JC. BAG-1L protein enhances androgen receptor function. J Biol Chem1998; 273 11660–11666

    CAS  PubMed  Google Scholar 

  36. Niyaz Y, Zeiner M, Gehring U. Transcriptional activation by the human Hsp70-associating protein Hap50. J Cell Sci2001; 114 1839–1845

    CAS  PubMed  Google Scholar 

  37. Sondermann H, Ho AK, Listenberger LL, et al Prediction of novel BAG-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 co-chaperone in Saccharomyces cerevisiae. J Biol Chem2002; 27733220–33227.

    CAS  PubMed  Google Scholar 

  38. Briknarova K, Takayama S, Brive L, et al Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol2001; 4 349–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, J.D., Arhel, N.J., Lee, S.S. et al. Nuclear BAG-1 expression inhibits apoptosis in colorectal adenoma-derived epithelial cells. Apoptosis 10, 301–311 (2005). https://doi.org/10.1007/s10495-005-0804-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-0804-8

Keywords

Navigation