Skip to main content

Advertisement

Log in

Cell death pathways in juvenile Batten disease

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis, Golgi fragmentation and elevated ceramide levels occur in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) neurons, lymphoblasts and fibroblasts. Our purpose was to examine whether apoptosis is the mechanism of cell death in JNCL. This was tested by analyzing caspase-dependent/independent pathways and autophagy, and caspase effects on ceramide and Golgi fragmentation. zVAD prevented caspase activation, but not all cell death. Inhibiting caspase-8 suppressed caspases more than inhibition of any other caspase. Inhibiting caspase-8/6 was synergistic. zVAD suppressed autophagy. 3-methyladenine suppressed caspase activation less than zVAD did. Blocking autophagy/caspase-8/or-6 was synergistic. Blocking autophagy/caspase-3/or-9 was not. Inhibiting caspase-9/3 suppressed autophagy. Golgi fragmentation was suppressed by zVAD, and blocked by CLN3. CLN3, not zVAD, prevented ceramide elevation. In conclusion: caspase-dependent/independent apoptosis and autophagy occur caspase-dependent pathways initiate autophagy Golgi fragmentation results from apoptosis ceramide elevation is independent of caspases, and CLN3 blocks all cell death, prevents Golgi fragmentation and elevation of ceramide in JNCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong N. Neuronal ceroid lipofuscinoses and possible pathogenic mechanism. Mol Genet Metab 2000; 71(1/2): 195–206.

    Article  PubMed  Google Scholar 

  2. The International Batten, C. Isolation of a novel gene underlying Batten Disease, CLN3. Cell 1995; 82: 949–957.

    Google Scholar 

  3. Boustany RM, Neurology of the Neuronal Ceroid-lipofuscinoses: Late Infantile and Juvenile Types. Am J Med Gen 1992; 42: 533–535.

    Article  Google Scholar 

  4. Boustany R-M, Batten disease or neuronal ceroid lipofuscinosis. In Handbook of Clinical Neurology, Neurodystrophies and Neurolipidoses. New York: Elsevier. 1996: 671–700.

    Google Scholar 

  5. Goebel HH, Morphologic diagnosis in neuronal ceroid lipofuscinoses. Neuropediatrics 1997; 28: 67–69.

    PubMed  Google Scholar 

  6. Kida E, Golabek AA, Wisniewski, KE, Cellular pathology and pathogenic aspects of neuronal ceroid lipofuscinoses. Adv Genet 2001; 45: 35–68.

    PubMed  Google Scholar 

  7. Walkley SU, et al.. Pathogenesis and brain dysfunction in Batten disease. Am J Med Genet 1995; 57(2): 196–203.

    Article  PubMed  Google Scholar 

  8. Fadeel B, Orrenius S, Zhivotovsky B, Apoptosis in human disease: A new skin for the old ceremony? Biochem Biophys Res Comm 1999; 266: 699.

    PubMed  Google Scholar 

  9. Lassmann H, et al.. Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathology (Berl) 1995; 89: 35–41.

    Article  Google Scholar 

  10. Mochizuki H, et al.. Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 1996; 137: 120–123.

    Article  PubMed  Google Scholar 

  11. Reed JC, Mechanisms of apoptosis. Am J Pathol 2000; 157(5): 1415–1430.

    PubMed  Google Scholar 

  12. Lane SC, et al.. Apoptosis as the mechanism of neurodegeneration in Batten’s disease. J Neurochem 1996; 67(2): 677–683.

    PubMed  Google Scholar 

  13. Kieseier BC, et al.. Leukocytes in neuronal ceroidlipofuscinoses: Function and apoptosis. Brain Dev 1997; 19(5): 317–322.

    Article  PubMed  Google Scholar 

  14. Zimmermann KC, Green DR, How cells die: Apoptosis pathways. J Allergy Clin Immunol 2001; 108(4 Suppl): S99–S103.

    Article  PubMed  Google Scholar 

  15. Salvesen G, Dixit VM. Caspase activation: The induced-proximity model. Proc Natl Acad Sci USA 1999; 96: 10964–10967.

    Article  PubMed  Google Scholar 

  16. Acehan D, et al.. Three dimensional structure of the apoptosome: Implications for assembly, pro-caspase-9 binding and activation. Mol Cell 2002; 9(2): 423–432.

    Article  PubMed  Google Scholar 

  17. Zou H, et al.. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates pro-caspase-9. J Biol Chem 1999; 274(17): 11549–11556.

    Google Scholar 

  18. Adams J, Cory S. Apoptosomes: Engines for caspase activation. Curr Opin Cell Biol 2002; 14: 715–720.

    Article  PubMed  Google Scholar 

  19. Dunn WAJ. Studies on the mechanisms of autophagy: Maturation of the autophagic vacuole. J Cell Biol 1990; 110: 1935–1945.

    Article  PubMed  Google Scholar 

  20. Dunn WAJ. Studies on the mechanisms of autophagy: Formation of the autophagic vacuole. J Cell Biol 1990; 110: 1923–1933.

    Article  PubMed  Google Scholar 

  21. Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 2001; 8: 569–581.

    Article  PubMed  Google Scholar 

  22. Qi L, Sit KH. CpG-specific common commitment in caspase-dependent and -independent cell deaths. Mol Cell Biol Res Comm 2000; 3: 33–41.

    Article  Google Scholar 

  23. Cohen I, Castedo M, Kroemer G. Tantalizing thanatos: Unexpected links in death pathways. Trends in Cell Biology 2002; 12(7): 293–295.

    Article  PubMed  Google Scholar 

  24. Guimaraes CA, et al.. Alternative programs of cell death in developing retinal tissue. J Biol Chem 2003; 278(43): 41938–41946.

    Article  PubMed  Google Scholar 

  25. Cohen O, et al.. DAP-kinase participates in TNF-alpha and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 1999; 146: 141–148.

    PubMed  Google Scholar 

  26. Inbal B, et al.. DAK kinase and DRP-1 mediate membrane blebbing and formation of autophagic vesicles during programmed cell death. J Cell Biol 2002; 157(3): 455–468.

    Article  PubMed  Google Scholar 

  27. Pelled D, et al., Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J Biol Chem 2002; 277(3): 1957–1961.

    Article  PubMed  Google Scholar 

  28. Puranam K, et al.. Upregulation of Bcl-2 and elevation of ceramide in Batten disease. Neuropediatrics 1997; 28(1): 37–41.

    PubMed  Google Scholar 

  29. Dhar S, et al.. Flupirtine blocks apoptosis in Batten patient lymphoblasts and in human postmitotic CLN3-and CLN2-deficient neurons. Annals of Neurology 2002; 51(4): 448–466.

    Article  PubMed  Google Scholar 

  30. Kornhuber J, et al.. Flupirtine showns functional NMDA receptor antagonism by enhancing Mg2+ block via activation of voltage independent potassium channels. J Neural Trans 1999; 106: 857–867.

    Article  Google Scholar 

  31. Lockhart EM, et al.. Allopregnanolone attenuates N-methyl-D-aspartate-induced excitotoxicity and apoptosis in the human NT2 cell line in culture. Neurosci Lett 2002; 328: 33–36.

    Article  PubMed  Google Scholar 

  32. Persaud-Sawin DA, VanDongen A, Boustany RM. Motifs within the CLN3 protein: Modulation of cell growth rates and apoptosis. Hum Mol Genet 2002; 11(18): 2129–2142.

    Article  PubMed  Google Scholar 

  33. Mitchison HA, Turmaine M, Davies SW. Lipofuscin deposition and non-apoptotic neuronal cell dath in the Cln3delta(exons1-6) mouse. in 9th International Congress on Neuronal Ceroid Lipofuscinosis (Batten Disease). 2003. Chicago, IL.

  34. Mitchison HA, Lim MJ, Cooper JD, Selectivity and types of cell death in neuronal ceroid lipofuscinosis (NCLs). Brain Pathol 2004; 14: 86–96.

    PubMed  Google Scholar 

  35. Puranam KL, et al.. CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide. Mol Genet Metab 1999; 66(4): 294–308.

    Article  PubMed  Google Scholar 

  36. Rylova SN, et al.. The CLN3 gene is a novel molecular target for cancer drug discovery. Cancer Res 2002; 62(3): 801–808.

    PubMed  Google Scholar 

  37. Pane MA, Puranam KL, Boustany RM, Expression of cln3 in human NT2 neuronal precursor cells and neonatal rat brain. Pediatr Res 1999; 46(4): 367–374.

    PubMed  Google Scholar 

  38. Van Meer G, Holthius J, Sphingolipid transport in eukaryotic cells. Biochem Biophys Res Commun 2000; 1486: 145–170.

    Google Scholar 

  39. Holthius J, et al.. The organization of potential sphingolipids in intracellular membrane transport. Physiological Reviews 2001; 31(4): 1689–1723.

    Google Scholar 

  40. Persaud-Sawin DA, et al.. A galactosylceramide binding domain is involved in trafficking of CLN3 from Golgi to rafts via recycling endosomes. Ped Res 2004; 56(3): 449–463.

    Google Scholar 

  41. van Meer G, Lisman Q, Sphingolipid transport: Rafts and translocators. J Biol Chem 2002; 277(29): 25855–25858.

    Google Scholar 

  42. Ko YG, et al.. TNF-alpha-mediated apoptosis is initiated in caveolae-like domains. Journal of Immunology 1999; 162: 7217–7223.

    Google Scholar 

  43. Fujita Y, et al.. Fragmentation of the Golgi apparatus of Betz cells in patients with amyotrophic lateral sclerosis. J Neurol Sci 1999; 163: 81–85.

    Article  PubMed  Google Scholar 

  44. Stieber A, Mourelatos Z, Gonatas NK. In Alzheimer’s disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic. Am J Pathol 1996; 148: 415–426.

    PubMed  Google Scholar 

  45. Sakurai A, et al.. Fragmentation of the Golgi apparatus of the ballooned neurons in patients with corticobasal degeneration and Creutzfeldt-Jakob disease. Acta Neuropathology 2000; 100: 270–274.

    Article  Google Scholar 

  46. Philpott KL, et al.. Morphological and biochemical changes in neurons: Apoptosis versus mitosis. Eur J Neurosci 1996; 8: 1906–1915.

    PubMed  Google Scholar 

  47. Lane JD, et al.. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. Journal of Cell Biology 2002; 156(3): 495–509.

    Article  PubMed  Google Scholar 

  48. Mancini M, et al.. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. Journal of Cell Biology 2000; 149(3): 603–612.

    Article  PubMed  Google Scholar 

  49. Lane JD, et al.. Apoptotic cleavage of cytoplasmic dynein intermediate chain and p150(Glued) stops dynein-dependent membrane mobility. J Cell Biol 2001; 153: 1415– 1426.

    Article  PubMed  Google Scholar 

  50. Allan VJ, et al.. Cytoplasmic dynein in the secretory pathway to apoptosis. In Keystone Symposia: Golgi Apparatus and Secretory Pathway of Eukaryotic Cells. 2004. Breckinridge, Co, USA.

    Google Scholar 

  51. Ohanian J, Ohanian V, Sphingolipids in mammalian cell signalling. Cell Mol Life Sci 2001; 58(14): 2053–2068.

    PubMed  Google Scholar 

  52. Hannun Y, Luberto C, Argraves KM, Enzymes of sphingolipid metabolism: From modular to intregrative signaling. Biochem 2001; 40(16): 4893–4903.

    Article  PubMed  Google Scholar 

  53. Zhang J, et al.. Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA 1996; 93: 5325–5328.

    Article  PubMed  Google Scholar 

  54. Hannun Y, Luberto C, Ceramide in the eukaryotic stress response. Trends in Cell Biology 2000; 10: 73–80.

    Article  PubMed  Google Scholar 

  55. Obeid L, et al.. Programmed cell death by ceramide. Science 1993; 259: 1769–1771.

    PubMed  Google Scholar 

  56. Birbes H, et al.. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB Journal 2001; 15(14): 2669–2679.

    Article  PubMed  Google Scholar 

  57. Perry DK, et al.. Serine palmitoyltransferase regulates? de novo? ceramide generation during etoposide-induced apoptosis. Journal of Biological Chemistry 2000; 275(12): 9078–9084.

    Article  PubMed  Google Scholar 

  58. Schissel SL, et al.. The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biolog Chem 1998; 273: 18250–18259.

    Article  Google Scholar 

  59. Zhao S, Yang Y-N, Song J-G, Ceramide induces caspase-dependent and -independent apoptosis in A-431 cells. J Cell Physiol 2004; 199: 47–56.

    Article  PubMed  Google Scholar 

  60. Chalfant CE, et al.. De novo ceramide regulates the alternative splicing of caspase-9 and Bcl-x in A549 ling adenocarcinoma cells. J Biolog Chem 2002; 277(15): 12587–12595.

    Article  Google Scholar 

  61. Sawada M, et al.. Molecular mechanisms of TNF-alpha-induced ceramide formation in human glioma cells: p53-mediated oxidant stress-dependent and -independent pathways. Cell Death Diff 2004(7 May 2004): 1–12.

    Google Scholar 

  62. Scheel-Toellner D, et al.. The death-inducing signaling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 2002; 297(4): 876–879.

    Article  PubMed  Google Scholar 

  63. Garcia A, et al.. Rafts: A simple way to control apoptosis by subcellular redistribution. Biochimie 2003; 85: 727–731.

    Article  PubMed  Google Scholar 

  64. Perry DK, Hannun Y, The role of ceramide in cell signaling. Biochem Biophys Res Commun 1998; 1436: 233–243.

    Google Scholar 

  65. Lui B, Obeid L, Hannun Y, Sphingomyelinases in cell regulation. Semin Cell Dev Biol 1997; 8: 311–322.

    Article  PubMed  Google Scholar 

  66. Munafo DB, Colombo MI, A novel assay to study autophagy: Regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114: 3619–3629.

    PubMed  Google Scholar 

  67. Lockshin RA, Zacheri Z, Caspase-independent cell deaths. Current Opinion in Cell Biology 2002; 14(6): 727–733.

    Article  PubMed  Google Scholar 

  68. Gomez-Santos C, et al.. Dopamine induces autophagic cell death and α-syneclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res 2003; 73: 341–351.

    Article  PubMed  Google Scholar 

  69. Sawada M, et al.. Ordering of ceramide activation and BaxòBcl-2 expression during etoposide induced apoptosis in C6 glioma cells. Cell Death Diff 2000; 7: 761–772.

    Article  Google Scholar 

  70. Ilangovan R, et al.. Inhibition of apoptosis by zVAD-fmk in SMN-depleted S2 cells. J Biolog Chem 2003; 278(33): 30993–30999.

    Article  Google Scholar 

  71. Methot N, et al.. Differential efficacies of caspase inhibitors on apoptosis markers suring sepsis in rats and implication for fractional inhibition requirements for therapeutics. J Exp Med 2004; 199(2): 199–207.

    Article  PubMed  Google Scholar 

  72. Rakheja D, et al.. CLN3p, the Batten disease protein, localizes to membrane lipid rafts (detergent resistant membranes). Biochem Biophys Res Comm 2004; 317: 988–991.

    Article  PubMed  Google Scholar 

  73. Torriglia A, et al.. Involvement of L-DNase II in nuclear degeneration during chick retina development. Exp Eye Res 2001; 72: 443–446.

    Article  PubMed  Google Scholar 

  74. Altairac S, et al.. Elastase is not required for L-DNase II activation during apoptosis in developing chicken neural retina. Neurosci Lett 2001; 303: 41–44.

    Article  PubMed  Google Scholar 

  75. Hirata H, et al.. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 1998; 187: 587–600.

    Article  PubMed  Google Scholar 

  76. Hermel E, et al.. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Diff 2004; 11: 424–438.

    Article  Google Scholar 

  77. Jia L, et al.. Br J Haematol 1997; 98: 673–685.

    Google Scholar 

  78. Delshad A, Al-Tiraihi T, Ultrastructure of apoptotic oligodendrocytes in the spinal cord of adult rat with long-standing axotomized sciatic nerve. Folia Neuropathol 2001; 39(3): 125–128.

    PubMed  Google Scholar 

  79. Chi S, et al.. Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 1999; 18: 2281–2290.

    Article  PubMed  Google Scholar 

  80. Bursch W, et al.. Carcinogenesis 1996; 17: 1595–1607.

    PubMed  Google Scholar 

  81. Walker PR, et al.. Topoisomerase II-reactive chemotherapeutic drugs induce apoptosis in thymocytes. Cancer Res 1991; 51: 1078–1085.

    PubMed  Google Scholar 

  82. Facompre M, et al.. Relationship between cell cycle changes and variations of the mitochondrial membrane potential induced by etoposide. Mol Cell Biol Res Com 2000; 4: 37–42.

    Article  Google Scholar 

  83. Wu SH, et al.. Potential role for cathepsin D in p53-dependent tumor supression and chemosensitivity. Oncogene 1998; 16: 2177–2183.

    Article  PubMed  Google Scholar 

  84. Deiss LP, et al.. Capthepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J 1996; 15: 3861–3870.

    PubMed  Google Scholar 

  85. Bidere N, et al.. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase of apoptosis. J Biolog Chem 2003; 278(33): 31401–31411.

    Article  Google Scholar 

  86. Cirman T, et al.. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid and multiple papain-like lysosomeal cathepsins. J Biolog Chem 2004; 279(5): 3578–3587.

    Article  Google Scholar 

  87. Boya P, et al.. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 2003; 197: 1323–1334.

    Article  PubMed  Google Scholar 

  88. Doonan F, Donovan M, Cotter TG, Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. Journal of Neuroscience 2003; 23(13): 5723–5731.

    PubMed  Google Scholar 

  89. Koike M, et al.. Involvement of two different cell death pathways in retinal atrophy of cathepsin-D mice. Mol Cell Neurosci 2003; 22: 146–161.

    Article  PubMed  Google Scholar 

  90. Selznick LA, et al.. Amyloid beta-induced neuronal death is bax-dependnet but caspase-independent. J Neuropathol Exp Neurol 2000; 59: 271–279.

    PubMed  Google Scholar 

  91. Carmody RJ, Cotter TG, Oxidative stree induces caspase-independent retinal apoptosis in vitro. Cell Death Diff 2000; 7: 282–291.

    Article  Google Scholar 

  92. Donovan M, Cotter TG, Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell Death Diff 2002; 9: 1220–1231.

    Article  Google Scholar 

  93. Johnson MD, et al.. Contribution of p53-dependent caspase activation to neuronal cell death declines with neuronal maturation. J Neurosci 1999; 19: 2996–3006.

    PubMed  Google Scholar 

  94. Wellington CL, Hayden MR, Caspases and neurodegeneration: On the cutting edge of new therapeutic approaches. Clin Genet 2000; 57: 1–10.

    Article  PubMed  Google Scholar 

  95. Lang-Rollin ICJ, et al.. Mechanisms of caspase-independent neuronal death: Energy depletion/vv and free radical generation. J Neurosci 2003; 23(35): 11015–11025.

    PubMed  Google Scholar 

  96. Steinman RM, et al.. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000; 191: 411–416.

    Article  PubMed  Google Scholar 

  97. Bretscher MS, Munro S, Cholesterol and the Golgi apparatus. Science 1993; 261: 1280–1281.

    Google Scholar 

  98. Johnson DE, Noncasapse proteases in apoptosis. Leukemia 2000; 14: 1695–1703.

    PubMed  Google Scholar 

  99. Leist M, Jaatela M, Triggering of apoptosis by cathepsins. Cell Death Diff 2001; 8: 324–326.

    Article  PubMed  Google Scholar 

  100. Wang K, Calpains and caspase: Can you tell the difference? Trends Neurosci 2000; 23: 20–26.

    Article  PubMed  Google Scholar 

  101. Hannun YA, Obeid LM, The Ceramide-centric universe of lipid-mediated cell regulation: Stressencounters of the lipid kind. J Biol Chem 2002; 277(29): 25847–25850.

    Google Scholar 

  102. Luberto C, Kraveka JM, Hannun Y, Ceramide regulation of apoptosis versus differentiation: A walk on a fine line. Lessons from neurobiology. Neurochem Res 2002; 27(7/8): 609–617.

    Article  PubMed  Google Scholar 

  103. Kolesnick R, Hannun Y, Ceramide and apoptosis Trends Biochem Sci 1999; 24: 224–225.

    Article  PubMed  Google Scholar 

  104. Mochizuki T, et al.. Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide. J Biol Chem 2002; 277(4): 2790–2797.

    Article  PubMed  Google Scholar 

  105. M Heinrich et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. Embo J 1999; 18(19): 5252–5263.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R-M. N. Boustany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persaud-Sawin, D.A., Boustany, RM.N. Cell death pathways in juvenile Batten disease. Apoptosis 10, 973–985 (2005). https://doi.org/10.1007/s10495-005-0733-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-0733-6

Keywords

Navigation