Skip to main content
Log in

Large-Eddy Simulations of the Mascotte Test Cases Operating at Supercritical Pressure

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Liquid rocket, Diesel or aircraft engines may operate in the transcritical regime. In such thermodynamic conditions, the classical phase change that occurs at subcritical pressure disappears and the mixing layer between the dense and cold jet and the outer gaseous stream is characterized by large variations of density and thermodynamic properties. Fluids show strong departure from a perfect gas behavior and a real-gas formulation is needed to model the fluid state. The extension of the unstructured AVBP solver, jointly developed by CERFACS and IFPEN, to handle high-pressure thermodynamics is presented in details. It is then validated on the experimental coaxial injectors studied with the Mascotte test rig from ONERA that operate in the transcritical range, namely the LOx/GH2 cases A60 and C60 and the LOx/GCH4 configuration G2. The flame pattern observed in experiments is properly recovered, hence validating the numerical strategy. Numerical results are then discussed focusing on the role of the momentum flux ratio on the development of transcritical flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Poling, B.E., Prausnitz, J.M., O’Connel, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  2. Oschwald, M., Smith, J.J., Branam, R., Hussong, J., Shick, A., Chehroudi, B., Talley, D.: Injection of fluids into supercritical environments. Combust. Sci. Technol. 178, 49 (2006)

    Google Scholar 

  3. Segal, C., Polikhov, S.: Subcritical to supercritical mixing. Phys. Fluids 20, 052101 (2008)

    MATH  Google Scholar 

  4. Habiballah, M., Orain, M., Grisch, F., Vingert, L., Gicquel, P.: Experimental studies of high-pressure cryogenic flames on the Mascotte facility. Combust. Sci. Technol. 178(1), 101 (2006)

    Google Scholar 

  5. Gaillard, P., Giovangigli, V., Matuszewski, L.: A diffuse interface Lox/hydrogen transcritical flame model. Combust. Theor. Model. 20(3), 486 (2016)

    MathSciNet  Google Scholar 

  6. Matheis, J., Hickel, S.: Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A. Int. J. Multiphase Flow 99, 294 (2018)

    MathSciNet  Google Scholar 

  7. Traxinger, C., Zips, J., Pfitzner, M.: Single-phase instability in non-premixed flames under liquid rocket engine relevant conditions. J. Propuls. Power 35(4), 675 (2019)

    Google Scholar 

  8. Candel, S., Juniper, M., Single, G., Scouflaire, P., Rolon, C.: Structure and dynamics of cryogenic flames at supercritical pressure. Combust. Sci. Technol. 178, 161 (2006)

    Google Scholar 

  9. Bellan, J.: Theory, modeling and analysis of turbulent supercritical mixing. Combust. Sci. Technol. 178(1), 253 (2006)

    Google Scholar 

  10. Oefelein, J.: Thermophysical characteristics of shear-coaxial LOX-H2 flames at supercritical pressure. Proc. Combust. Inst. 30(2), 2929 (2005)

    Google Scholar 

  11. Pons, L., Darabiha, N., Candel, S.: Pressure effects on nonpremixed strained flames. Combustion and Flame 152(1-2), 218 (2008)

    Google Scholar 

  12. Ribert, G., Zong, N., Yang, V., Pons, L., Darabiha, N., Candel, S.: Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures. Combustion and Flame 154(3), 319 (2008)

    Google Scholar 

  13. Giovangigli, V., Matuszewski, L., Dupoirieux, F.: Detailed modeling of planar transcritical H2–O2–N2 flames. Combust. Theor. Model. 15(2), 141 (2011)

    MATH  Google Scholar 

  14. Giovangigli, V., Matuszewski, L.: Numerical simulation of transcritical strained laminar flames. Combustion and Flame 159(9), 2829 (2012)

    Google Scholar 

  15. Banuti, D.T., Ma, P.C., Hickey, J.P., Ihme, M.: Thermodynamic structure of supercritical LOX–GH2 diffusion flames. Combustion and Flame 196, 364 (2018)

    Google Scholar 

  16. Bellan, J.: Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Prog. Energy Combust. Sci. 26, 329 (2000)

    Google Scholar 

  17. Selle, L., Okong’o, N., Bellan, J., Harstad, K.: Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study. J. Fluid Mech. 593, 57 (2007)

    MATH  Google Scholar 

  18. Taşkinoğlu, E., Bellan, J.: Subgrid-scale models and large-eddy simulation of oxygen stream disintegration and mixing with a hydrogen or helium stream at supercritical pressure. J. Fluid Mech. 679, 156 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Bellan, J.: Direct numerical simulation of a high-pressure turbulent reacting temporal mixing layer. Combustion and Flame 176, 245 (2017)

    Google Scholar 

  20. Lapenna, P.E., Creta, F.: Mixing under transcritical conditions: an a-priori study using direct numerical simulation. J. Supercrit. Fluid. 128, 263 (2017)

    Google Scholar 

  21. Demoulin, F., Zurbach, S., Mura, A.: High-pressure supercritical turbulent cryogenic injection and combustion: a single-phase flow modeling proposal. Journal of Propulsion and Power 25(2) (2009)

  22. Poschner, M., Pfitzner, M.: CFD-Simulation of the injection and combustion of LOX and H2 at supercritical pressures. In: Proceedings of the European Combustion Meeting 2009 (2010)

  23. Zong, N., Yang, V.: Cryogenic fluid jets and mixing layers in transcritical and supercritical environments. Combust. Sci. Technol. 178(1), 193 (2006)

    MathSciNet  Google Scholar 

  24. Oefelein, J.: Mixing and combustion of cryogenic oxygen-hydrogen shear-coaxial jet flames at supercritical pressure. Combust. Sci. Technol. 178(1), 229 (2006)

    Google Scholar 

  25. Masquelet, M., Menon, S., Jin, Y., Friedrich, R.: Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine. Aerosp. Sci. Technol. 13(8), 466 (2009)

    Google Scholar 

  26. Terashima, H., Kawai, S., Yamanishi, N.: High-resolution numerical method for supercritical flows with large density variations. AIAA Journal 49(12), 2658 (2011)

    Google Scholar 

  27. Schmitt, T., Méry, Y., Boileau, M., Candel, S.: Large-eddy simulation of oxygen/methane flames under transcritical conditions. Proc. Combust. Inst. 33(1), 1383 (2011)

    Google Scholar 

  28. Schmitt, T., Rodriguez, J., Leyva, I., Candel, S.: Experiments and numerical simulation of mixing under supercritical conditions. Phys. Fluids 24(5), 055104 (2012)

    Google Scholar 

  29. Petit, X., Ribert, G., Lartigue, G., Domingo, P.: Large-eddy simulation of supercritical fluid injection. J. Supercrit. Fluid. 84, 61 (2013)

    Google Scholar 

  30. Petit, X., Ribert, G., Domingo, P.: Framework for real-gas compressible reacting flows with tabulated thermochemistry. J. Supercrit. Fluid. 101, 1 (2015)

    Google Scholar 

  31. Kawai, S., Terashima, H., Negishi, H.: A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state. J. Comput. Phys. 300, 116 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Matheis, J., Müller, H., Lenz, C., Pfitzner, M., Hickel, S.: Volume translation methods for real-gas computational fluid dynamics simulations. J. Supercrit. Fluid. 107, 422 (2016)

    Google Scholar 

  33. Ma, P.C., Lv, Y., Ihme, M.: Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach. J. Comput. Phys. 340, 330 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Ma, P.C., Banuti, D., Hickey, J.P., Ihme, M.: Detailed modeling of planar transcritical H2–O2–N2 flames. In: 55th AIAA Aerospace Sciences Meeting, p 0143 (2017)

  35. Zong, N., Ribert, G., Yang, V.: A flamelet approach for modeling of liquid oxygen (LOx)/methane flames at supercritical pressures. AIAA Paper 946, 2008 (2008)

    Google Scholar 

  36. Lacaze, G., Oefelein, J.C.: A non-premixed combustion model based on flame structure analysis at supercritical pressures. Combustion and Flame 159(6), 2087 (2012)

    Google Scholar 

  37. Zips, J., Müller, H., Pfitzner, M.: Efficient thermo-chemistry tabulation for non-premixed combustion at high-pressure conditions. Flow, Turbulence and Combustion 101(3), 821 (2018)

    Google Scholar 

  38. Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Lacaze, G., Schmitt, T., Ruiz, A., Oefelein, J.: Comparison of energy-, pressure-and enthalpy-based approaches for modeling supercritical flows. Computers and Fluids 181, 35 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Meng, H., Yang, V.: A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme. J. Comput. Phys. 189, 277 (2003)

    MATH  Google Scholar 

  42. Müller, H., Pfitzner, M., Matheis, J., Hickel, S.: Large-eddy simulation of coaxial LN2/GH2 injection at trans-and supercritical conditions. J. Propuls. Power 32(1), 46 (2015)

    Google Scholar 

  43. Müller, H., Pfitzner, M.: Large-Eddy Simulation of transcritical LOx/CH4 Jet Flames. In: 6th European Conference for Aeronautics and Space Sciences (EUCASS), Krakau, Poland (2015)

  44. Müller, H., Niedermeier, C.A., Matheis, J., Pfitzner, M., Hickel, S.: Large-eddy simulation of nitrogen injection at trans-and supercritical conditions. Phys. Fluids 28(1), 015102 (2016)

    Google Scholar 

  45. Schmitt, T., Selle, L., Ruiz, A., Cuenot, B.: Large-eddy simulation of supercritical-pressure round jets. AIAA Journal 48(9) (2010)

  46. Pantano, C., Saurel, R., Schmitt, T.: An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows. J. Comput. Phys. 335, 780 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Zong, N., Yang, V.: Near-field flow and flame dynamics of LOX/methane shear-coaxial injector under supercritical conditions. Proc. Combust. Inst. 31(2), 2309 (2007)

    MathSciNet  Google Scholar 

  48. Ruiz, A.M., Lacaze, G., Oefelein, J.C., Mari, R., Cuenot, B., Selle, L., Poinsot, T.: Numerical benchmark for high-reynolds-number supercritical flows with large density gradients. AIAA J. 54(5), 1445 (2015)

    Google Scholar 

  49. Laurent, C., Esclapez, L., Maestro, D., Staffelbach, G., Cuenot, B., Selle, L., Schmitt, T., Duchaine, F., Poinsot, T.: Flame–wall interaction effects on the flame root stabilization mechanisms of a doubly-transcritical LO 2/LCH 4 cryogenic flame. Proceedings of the combustion institute (2018)

  50. Wang, X., Huo, H., Unnikrishnan, U., Yang, V.: A systematic approach to high-fidelity modeling and efficient simulation of supercritical fluid mixing and combustion. Combustion and Flame 195, 203 (2018)

    Google Scholar 

  51. Schmitt, T., Selle, L., Cuenot, B., Poinsot, T.: Simulation des Grandes Echelles de la combustion turbulente à pression supercritique. Comptes Rendus Mé,canique 337(6-7), 528 (2009)

    Google Scholar 

  52. Matsuyama, S., Shinjo, J., Ogawa, S., Mizobuchi, Y.: Large Eddy simulation of LOX/GH2 shear-coaxial jet flame at supercritical pressure. In: 48th AIAA Aerospace Sciences Meeting, Orlando, Florida (2010)

  53. Hakim, L., Ruiz, A., Schmitt, T., Boileau, M., Staffelbach, G., Ducruix, S., Cuenot, B., Candel, S.: Large eddy simulations of multiple transcritical coaxial flames submitted to a high-frequency transverse acoustic modulation. Proc. Combust. Inst. 35(2), 1461 (2015)

    Google Scholar 

  54. Hakim, L., Schmitt, T., Ducruix, S., Candel, S.: Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing: Influence of the modulation frequency on the flame response. Combustion and Flame 162(10), 3482 (2015)

    Google Scholar 

  55. Schmitt, T., Coussement, A., Ducruix, S., Candel, S.: Large Eddy Simulations of high amplitude self-sustained acoustic oscillations in a rocket engine coaxial injector in the transcritical regime. In: Proceedings of Space Propulsion (2016)

  56. Schmitt, T., Staffelbach, G., Ducruix, S., Gröning, S., Hardi, J., Oschwald, M.: Large-Eddy Simulations of a sub-scale liquid rocket combustor: influence of fuel injection temperature on thermo-acoustic stability. In: 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS) (2017)

  57. Chehroudi, B., Talley, D.: Visual characteristics and initial growth rate of round cryogenic jets at subcritical and supercritical pressures. E. Coy, Phys. Fluids 14(2), 850 (2002)

    MATH  Google Scholar 

  58. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards, Philadelphia (2005)

    Google Scholar 

  59. Lee, L.L., Starling, K.E., Chung, T.H., Ajlan, M.: Generalized multiparameters corresponding state correlation for polyatomic, polar fluid transport properties. Industrial and Chemical Engineering Research 27, 671 (1988)

    Google Scholar 

  60. Juanós, A. J., Sirignano, W.A.: Pressure effects on real-gas laminar counterflow. Combustion and Flame 181, 54 (2017)

    Google Scholar 

  61. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient. Flow, Turbulence and Combustion 62(3), 183 (1999). JX

    MATH  Google Scholar 

  62. Borghesi, G., Bellan, J.: A priori and a posteriori investigations for developing large eddy simulations of multi-species turbulent mixing under high-pressure conditions. Phys. Fluids 27(035117) (2015)

  63. Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27, 1197 (1977)

    Google Scholar 

  64. Lemmon, E., McLinden, M., Friend, D.: NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 20899, 2009), chap. Thermophysical Properties of Fluid Systems

  65. Mayer, W., Tamura, H.: Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine. J. Propuls. Power 12(6), 1137 (1996)

    Google Scholar 

  66. Ivancic, B., Mayer, W.: Time-and length scales of combustion in liquid rocket thrust chambers. J. Propuls. Power 18(2), 247 (2002)

    Google Scholar 

  67. Ruiz, A., Cuenot, B., Selle, L., Poinsot, T.: The flame structure of a turbulent supercritical hydrogen/oxygen flow behind a splitter plate. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p 6121 (2011)

  68. Mari, R., Cuenot, B., Duchaine, F., Selle, L.: Stabilization mechanisms of a supercritical hydrogen/oxygen flame. In: Proceedings of the Summer Program, p 439. Citeseer (2012)

  69. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193 (2002)

    Google Scholar 

  70. Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combustion and Flame 152(3), 415 (2008)

    Google Scholar 

  71. Pera, C., Colin, O., Jay, S.: Development of a FPI detailed chemistry tabulation methodology for internal combustion engines. Oil & Gas Science and Technology-Revue de l’IFP 64(3), 243 (2009)

    Google Scholar 

  72. Zong, N., Yang, V.: An efficient preconditioning scheme for real-fluid mixtures using primitive pressure–temperature variables. Proc. Combust. Inst. 31(2), 2309 (2007)

    MathSciNet  MATH  Google Scholar 

  73. Huo, H., Yang, V.: Large-Eddy Simulation of Supercritical Combustion: Model Validation Against Gaseous H 2–O 2 Injector. J. Propuls. Power 33(5), 1272 (2017)

    Google Scholar 

  74. Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O., Poinsot, T.: High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys. 202(2), 710 (2005)

    MathSciNet  MATH  Google Scholar 

  75. Schönfeld, T., Poinsot, T.: Influence of boundary conditions in LES of premixed combustion instabilities. In: Annual Research Briefs, pp 73–84. Center for Turbulence Research, NASA Ames/Stanford University (1999)

  76. Colin, O., Rudgyard, M.: Development of high-order Taylor-Galerkin schemes for unsteady calculations. J. Comput. Phys. 162(2), 338 (2000)

    MathSciNet  MATH  Google Scholar 

  77. Okong’o, N., Bellan, J.: Consistent boundary conditions for multicompoment real gas mixtures based on characteristic waves. J. Comput. Phys. 176, 330 (2002)

    MATH  Google Scholar 

  78. Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R.: An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15(8), 2279 (2003)

    MATH  Google Scholar 

  79. Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11(7), 1699 (1999)

    MATH  Google Scholar 

  80. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: Simulations aux grandes échelles de la combustion turbulente prémélangée dans les statoréacteurs. Phys. Fluids 12(7), 1843 (2000)

    MATH  Google Scholar 

  81. Vingert, L., Habiballah, M., Vuillermoz, P., Zurbach, S.: MASCOTTE, a test facility for cryogenic combustion research at high pressure. In: 51st International Astronautical Congress, Rio De Janeiro, Brazil (2000)

  82. Juniper, M.: Structure et stabilisation des flammes cryotechniques. Ph.D. thesis, Ecole Centrale de Paris (2001)

  83. Singla, G., Scouflaire, P., Rolon, C., Candel, S.: Transcritical oxygen/transcritical or supercritical methane combustion. Proc. Combust. Inst. 30(2), 2921 (2005)

    Google Scholar 

  84. Schmitt, P., Poinsot, T.J., Schuermans, B., Geigle, K.: Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner. J. Fluid Mech. 570, 17 (2007)

    MATH  Google Scholar 

  85. Jaegle, F., Cabrit, O., Mendez, S., Poinsot, T.: Implementation methods of wall functions in cell-vertex numerical solvers. Flow, turbulence and combustion 85 (2), 245 (2010)

    MATH  Google Scholar 

  86. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104 (1992)

    MathSciNet  MATH  Google Scholar 

  87. Kraichnan, R.: Diffusion by a random velocity field. Phys. Fluids 13, 22 (1970)

    MATH  Google Scholar 

  88. Smirnov, A., Shi, S., Celik, I.: Random flow generation technique for large eddy simulations and particle-dynamics modeling. Trans. ASME. Journal of Fluids Engineering 123, 359 (2001)

    Google Scholar 

  89. Juniper, M., Tripathi, A., Scouflaire, P., Rolon, J., Candel, S.: Structure of cryogenic flames at elevated pressures. Proc. Combust. Inst. 28(1), 1103 (2000)

    Google Scholar 

  90. Fiala, T., Sattelmayer, T.: A posteriori computation of OH* radiation from numerical simulations in rocket combustion chambers. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, July, pp 1–5 (2013)

  91. Zong, N., Yang, V.: Cryogenic fluid dynamics of pressure swirl injectors at supercritical conditions. Phys. Fluids 20, 056103 (2008)

    MATH  Google Scholar 

  92. Urbano, A., Selle, L., Staffelbach, G., Cuenot, B., Schmitt, T., Ducruix, S., Candel, S.: Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine. Combustion and Flame 169, 129 (2016)

    Google Scholar 

  93. Castiglioni, G., Bellan, J.: On models for predicting thermodynamic regimes in high-pressure turbulent mixing and combustion of multispecies mixtures. J. Fluid Mech. 843, 536 (2018)

    MathSciNet  Google Scholar 

  94. Pelletier, M., Thomas, S., Ducruix, S.: Implementation of a diffuse interface method in a compressible multicomponent LES solver. In: ICLASS 2018 (2018)

  95. Nayigizente, D., Thomas, S., Ducruix, S.: Unsteady simulations of liquid/gas interfaces using the Second Gradient theory. In: ICLASS 2018 (2018)

Download references

Acknowledgements

Support provided by ArianeGroup, the prime contractor of the Ariane launcher cryogenic propulsion system and CNES, the French National Space Agency, is gratefully acknowledged. The author also greatly acknowledge Robin Nez from EM2C, Bénédicte Cuenot and Gabriel Staffelbach from Cerfacs and Laurent Selle from IMFT for their contributions in the AVBP-RG project. This work was granted access to the HPC resources of IDRIS and CINES made available by GENCI (Grand Equipement National de Calcul Intensif) under the allocation A0042B06176. A part of this work was performed using HPC resources from the mesocentre computing center of Ecole CentraleSupélec and Ecole Normale Supérieure Paris-Saclay supported by CNRS and Région Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmitt.

Ethics declarations

Conflict of interests

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix : Jacobian Matrices for TTG Schemes

Appendix : Jacobian Matrices for TTG Schemes

The general expression for the Two-Step Taylor Galerkin schemes [76] used in AVBP are given by :

$$ \begin{array}{@{}rcl@{}} \overrightarrow{\tilde{w}}^{n} &=& \overrightarrow{w}^{n} - \alpha \varDelta t \overrightarrow{\nabla} \cdot \overline{\overline{F}}^{n} + \beta \varDelta t^{2} \overrightarrow{\nabla} \cdot \left (\overline{\overline{\overline{\mathcal{A}}}}(\overrightarrow{\nabla} \cdot \overline{\overline{F}}^{n}) \right ) \end{array} $$
(30)
$$ \begin{array}{@{}rcl@{}} \overrightarrow{w}^{n+1} &=& \overrightarrow{w}^{n} - \varDelta t \overrightarrow{\nabla} \cdot \left (\theta_{1} \overline{\overline{\tilde{F}}}^{n} + \theta_{2} \overline{\overline{F}}^{n}\right ) \\ &&+ \gamma \varDelta t^{2} \left (\epsilon_{1} \nabla \cdot \left (\overline{\overline{\overline{\mathcal{A}}}}(\overrightarrow{\nabla} \cdot \overline{\overline{F}}^{n}) \right ) + \epsilon_{2} \nabla \cdot \left (\overline{\overline{\overline{\mathcal{A}}}}(\overrightarrow{\nabla} \cdot \overline{\overline{\tilde{F}}}^{n}) \right ) \right ) \end{array} $$
(31)

where \(\tilde { }\) corresponds to values computed at the intermediate step. The coefficients α, β, 𝜃1, 𝜃2, 𝜖1 et 𝜖2 are set to 0.49, 1/6, 0, 1, 0.01 et 0 for TTGC. The tensor \(\overline {\overline {\overline {\mathcal {A}}}}= (\overline {\overline {A}}, \overline {\overline {B}}, \overline {\overline {C}})\) is the vector of the jacobian of the convective flux tensor, where \(\overline {\overline {A}}\), \(\overline {\overline {B}}\) et \(\overline {\overline {C}}\) are the jacobian matrixes of the non-viscous fluxes given by :

$$ \overline{\overline{A}}(\overrightarrow{w}) = \frac{\partial \overrightarrow{f}}{\partial \overrightarrow{w}} \qquad \overline{\overline{B}}(\overrightarrow{w}) = \frac{\partial \overrightarrow{g}}{\partial \overrightarrow{w}} \qquad \overline{\overline{C}}(\overrightarrow{w}) = \frac{\partial \overrightarrow{h}}{\partial \overrightarrow{w}} $$
(32)

with \(\overrightarrow {w}=(\rho u_{1}, \rho u_{2}, \rho u_{3}, \rho E, \rho Y_{k})^{T}\) and \(\overline {\overline {F}}=(\overrightarrow {f},\overrightarrow {g},\overrightarrow {h})\) the inviscid flux matrix:

$$ \overrightarrow{f}=\left( \begin{array}{c} \rho {u_{1}^{2}} +P \\ \rho u_{1} u_{2} \\ \rho u_{1} u_{3} \\ \rho u_{1} H \\ \rho_{k} u_{1} \end{array} \right) \overrightarrow{g}=\left( \begin{array}{c} \rho u_{1} u_{2} \\ \rho {u_{2}^{2}} +P \\ \rho u_{2} u_{3} \\ \rho u_{2} H \\ \rho_{k} u_{2} \end{array} \right) \overrightarrow{h}=\left( \begin{array}{c} \rho u_{1} u_{3} \\ \rho u_{2} u_{3} \\ \rho {u_{3}^{2}} +P \\ \rho u_{3} H \\ \rho_{k} u_{3} \end{array} \right) $$

where H = E + p/ρ is the sensible total enthalpy and

$$ \begin{array}{@{}rcl@{}} \overline{\overline{A}} &=& \left (\begin{array}{ccccc} u_{1}(2-\varLambda) & -u_{2} \varLambda & -u_{3} \varLambda & \varLambda & {\varGamma}_{k} + \varLambda e_{c} -{u_{1}^{2}} \\ u_{2} & u_{1} & 0 & 0 & -u_{1}u_{2} \\ u_{3} & 0 & u_{1} & 0 & -u_{1}u_{3} \\ H - \varLambda {u_{1}^{2}} & -u_{1} u_{2} \varLambda & -u_{1} u_{3} \varLambda & u_{1} (1+\varLambda) & u_{1}(-H + {\varGamma}_{k} + \varLambda e_{c}) \\ Y_{k} & 0 & 0 & 0 & u_{1}(1-Y_{k}) \end{array} \right ) \end{array} $$
$$ \begin{array}{@{}rcl@{}} \overline{\overline{B}} &=& \left (\begin{array}{ccccc} u_{2} & u_{1} & 0 & 0 & -u_{1}u_{2} \\ -u_{1}\varLambda & u_{2}(2- \varLambda) & -u_{3} \varLambda & \varLambda & {\varGamma}_{k} + \varLambda e_{c} -{u_{2}^{2}} \\ 0 & u_{3} & u_{2} & 0 & -u_{2}u_{3} \\ -u_{1} u_{2} \varLambda & H - \varLambda {u_{2}^{2}} & -u_{2} u_{3} \varLambda & u_{2} (1+\varLambda) & u_{2}(-H + {\varGamma}_{k} + \varLambda e_{c}) \\ 0 & Y_{k} & 0 & 0 & u_{2}(1-Y_{k}) \end{array} \right ) \end{array} $$
$$ \begin{array}{@{}rcl@{}} \overline{\overline{C}} &=& \left (\begin{array}{ccccc} u_{3} & 0 & u_{1} & 0 & -u_{1}u_{3} \\ 0 & u_{3} & u_{2} & 0 & -u_{2}u_{3} \\ -u_{1}\varLambda & -u_{2} \varLambda & u_{3}(2- \varLambda) & \varLambda & {\varGamma}_{k} + \varLambda e_{c} -{u_{3}^{2}} \\ -u_{1} u_{3} \varLambda & -u_{2} u_{3} \varLambda & H - \varLambda {u_{3}^{2}} & u_{3} (1+\varLambda) & u_{3}(-H + {\varGamma}_{k} + \varLambda e_{c}) \\ 0 & 0 & Y_{k} & 0 & u_{3}(1-Y_{k}) \end{array} \right ) \end{array} $$

with the coefficients Ωk and Λ given by:

$$ \begin{array}{@{}rcl@{}} {\varGamma}_{k} &=& \frac{C_{p} v_{k}}{C_{v} \beta} - \varLambda h_{k} \end{array} $$
(33)
$$ \begin{array}{@{}rcl@{}} \varLambda &=& \frac{\alpha}{\rho \beta C_{v}} \end{array} $$
(34)

In Eqs. 33 and 34, Cp and Cv are the heat capacities at constant pressure and volume, α is the thermal expansion coefficient and β is the isothermal compressibility coefficient. Partial-mass volume and enthalpy are vk and hk, respectively and \(e_{c}=1/2 \sum \limits _{i=1}^{3} {u_{i}^{2}}\) is the kinetic energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, T. Large-Eddy Simulations of the Mascotte Test Cases Operating at Supercritical Pressure. Flow Turbulence Combust 105, 159–189 (2020). https://doi.org/10.1007/s10494-019-00096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00096-y

Keywords

Navigation