Skip to main content
Log in

Kovasznay Mode Decomposition of Velocity-Temperature Correlation in Canonical Shock-Turbulence Interaction

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The correlation coefficient R u T between the streamwise velocity and temperature is investigated for the case of canonical shock-turbulence interaction, motivated by the fact that this correlation is an important component in compressible turbulence models. The variation of R u T with the Mach number, the turbulent Mach number, and the Reynolds number is predicted using linear inviscid theory and compared to data from DNS. The contributions from the individual Kovasznay modes are quantified. At low Mach numbers, the peak post-shock R u T is determined by the acoustic mode, which is correctly predicted by the linear theory. At high Mach numbers, it is determined primarily by the vorticity and entropy modes, which are strongly affected by nonlinear and viscous effects, and thus less well predicted by the linear theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loyau, H., Batten, P., Leschziner, M.A.: Modelling Shock/boundary-layer interaction with nonlinear eddy-viscosity closures. Flow Turbul. Combust. 60, 257–282 (1998)

    Article  MATH  Google Scholar 

  2. Haidinger, F.A., Friedrich, R.: Computation of shock wave/turbulent boundary layer interactions using a two-equation model with compressibility corrections. Flow Turbul. Combust. 51, 501–505 (1993)

    Google Scholar 

  3. Roy, C.J., Blottner, F.G.: Review and assessment of turbulence models for hypersonic flows. Progress Aerosp. Sci. 42(7), 469–530 (2001)

    Google Scholar 

  4. Morkovin, M.V.: Effects of compressibility on turbulent flows. Mecanique de la Turbulence, CNRS. edited by A. Favre, Gordon and Breach, New York, pp. 367–380 (1962)

  5. Smits, A.J., Dussauge, J.P.: Turbulent shear layers in supersonic flow. Springer, USA (2006)

    Google Scholar 

  6. Mahesh, K., Lele, S.K., Moin, P.: The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xiao, X., Hassan, H.A., Edwards, J.R., Gaffney Jr, R. L.: Role of turbulent Prandtl numbers on heat flux at hypersonic Mach numbers. AIAA J. 45(4), 806–813 (2007)

    Article  Google Scholar 

  8. Larsson, J., Bermejo-Moreno, I., Lele, S.K.: Reynolds- and Mach number effects in canonical shock-turbulence interaction. J. Fluid Mech. 717, 293–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ryu, J., Livescu, D.: Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech. 756 (2014)

  10. Ribner, H.S.: Convection of a pattern of vorticity through a shock wave. Technical Report 2864, NACA TN, 1953

  11. Ribner, H.S.: Shock-turbulence interaction and the generation of noise. Technical Report 1233, NACA Report, 1954

  12. Lee, S., Lele, S.K., Moin, P.: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533–562 (1993)

    Article  Google Scholar 

  13. Lee, S., Lele, S.K., Moin, P.: Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hannappel, R., Friedrich, R.: Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence. Appl. Sci. Res. 54, 205–221 (1995)

    Article  MATH  Google Scholar 

  15. Jamme, S., Cazalbou, J. -B., Torres, F., Chassaing, P.: Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence. Flow Turbul. Combust. 68, 227–268 (2002)

    Article  MATH  Google Scholar 

  16. Quadros, R., Sinha, K., Larsson, J.: Turbulent energy flux generated by shock/homogeneous-turbulence interaction. Accepted in J. Fluid Mech. (2016)

  17. Mahesh, K., Lele, S.K., Moin, P.: The interaction of a shock wave with a turbulent shear flow. Technical Report 69, Thermosciences division, Department of Mechanical Engineering. Stanford University, Stanford, CA (1996)

    Google Scholar 

  18. Fabre, D., Jacquin, L., Sesterhenn, J.: Linear interaction of a cylindrical entropy spot with a shock. Phys. Fluids 13(8), 2403–2422 (2001)

    Article  MATH  Google Scholar 

  19. Pope, S.B.: In Turbulent Flows. Cambridge University Press, London (2000)

    Book  MATH  Google Scholar 

  20. Sinha, K., Mahesh, K., Candler, G.V.: Modeling shock-unsteadiness in shock-turbulence interaction. Phys. Fluids 15, 2290–2297 (2003)

    Article  MATH  Google Scholar 

  21. Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock-turbulence interaction. Phys. Fluids 21, 126101 (2009)

    Article  MATH  Google Scholar 

  22. Sinha, K.: Evolution of enstrophy in shock/homogeneous turbulence interaction. J. Fluid Mech. 707, 74–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Veera, V.K., Sinha, K.: Modelling the effect of upstream temperature fluctuations on shock/homogeneous turbulence interaction. Phys. Fluids 21, 025101 (2009)

    Article  MATH  Google Scholar 

  24. Moore, F.K.: Unsteady oblique interaction of a shock wave with a plane disturbance. Technical Report 2879 NACA Report (1954)

  25. Mahesh, K., Lee, S., Lele, S.K., Moin, P.: The interaction of an isotropic field of acoustic waves with a shock wave. J. Fluid Mech. 300, 383–407 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quadros, R., Sinha, K. & Larsson, J. Kovasznay Mode Decomposition of Velocity-Temperature Correlation in Canonical Shock-Turbulence Interaction. Flow Turbulence Combust 97, 787–810 (2016). https://doi.org/10.1007/s10494-016-9722-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9722-9

Keywords

Navigation