Skip to main content
Log in

Acceleration Statistics of Finite-Size Particles in Turbulent Channel Flow in the Absence of Gravity

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The interaction between finite-size particles and turbulent channel flow in the absence of gravity is studied here by direct numerical simulation. The turbulent flow is resolved by an efficient Fourier Chebyshev method, coupled with a direct forcing method for particle tracking. For the volume fraction and particle size we studied here, the presence of particles decreases slightly the streamwise mean velocity in the near wall region. The velocity fluctuations in the vicinity of particles are dissipated more than generated by the presence of the wakes. According to the statistics of the fluid in the vicinity of particles, particles segregate in regions of low streamwise and spanwise r.m.s. velocity close to the wall. Moreover, between the region of maximum particle concentration and the wall, particles are swept by flow presenting high acceleration fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaftori, D., Hestroni, G., Banerjee, S.: Particle behaviour in the turbulent boundary layer. I. Motion, deposition and entrainment. Phys. Fluids 7, 1095–1106 (1995)

    Article  Google Scholar 

  2. Kaftori, D., Hestroni, G., Banerjee, S.: Particle behaviour in the turbulent boundary layer. II. Velocity and distribution profiles. Phys. Fluids 7, 1107–1121 (1995)

    Article  Google Scholar 

  3. Vinkovic, I., Aguirre, C., Simons, S., Gorokhovski, M.: Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow. J. Multiphase Flow 32, 344–364 (2006)

    Article  MATH  Google Scholar 

  4. Squires, K.D., Eaton, J.K.: Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169–1178 (1991)

    Article  Google Scholar 

  5. Bec, J., Biferale, L., Cencini, M., Lanotte, A.S., Musacchio, S., Toschi, F.: Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 84502 (2007)

    Article  Google Scholar 

  6. Bec, J., Biferale, L., Cencini, M., Lanotte, A.S., Toschi, F.: Intermittency in the velocity distribution of heavy particles in turbulence. J. Fluid Mech. 646, 527536 (2010)

    Article  Google Scholar 

  7. Gore, R.A., Crowe, C.T.: Effect of particle size on the modulating turbulent intensity. J. Multiphase Flow 15(2), 279–285 (1989)

    Article  Google Scholar 

  8. Hestroni, G.: Particle-turbulence interaction. J. Multiphase Flow 15, 735–746 (1989)

    Article  Google Scholar 

  9. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883889 (1983)

    Article  Google Scholar 

  10. Fessler, J.R., Kulick, J.D., Eaton, J.K.: Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6, 3742–3749 (1994)

    Article  Google Scholar 

  11. Aliseda, A., Cartellier, A., Hainaux, F., Lasheras, J.C.: Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77–105 (2002)

    Article  MATH  Google Scholar 

  12. Wood, A.M., Hwang, W., Eaton, J.K.: Preferential concentration of particles in homogeneous and isotropic turbulence. Int. J. Multiphase Flow 31, 1220–1230 (2005)

    Article  MATH  Google Scholar 

  13. Lavezzo, V., Soldati, A., Gerashchenko, S., Warhaft, Z., Collins, L.R.: On the role of gravity and shear on inertial particle accelerations in near wall turbulence. J. Fluid Mech. 658, 229–246 (2010)

    Article  MATH  Google Scholar 

  14. Portela, L.M., Bijlard, M.J., Oliemans, R.V.A., Ooms, G.: Direct numerical simulation analysis of the local flow topology in a particle-laden turbulent channel flow. J. Fluid Mech. 653, 35–56 (2010)

    Article  MATH  Google Scholar 

  15. Marchioli, C., Soldati, A.: Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)

    Article  MATH  Google Scholar 

  16. Maxey, M.R.: The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441–465 (1987)

    Article  MATH  Google Scholar 

  17. Pan, Y., Banerjee, S.: Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 2733–2755 (1996)

    Article  Google Scholar 

  18. Squires, K.D., Eaton, J.K.: Particle response and turbulence modification in isotropic turbulence. Phys. Fluids 2, 1191–1203 (1990)

    Article  Google Scholar 

  19. Qureshi, N.N., Bourgoin, M., Baudet, C., Cartellier, A., Gagne, Y.: Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99, 184502 (2007)

    Article  Google Scholar 

  20. Volk, R., Calzavarini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J.-F., Toschi, F.: Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237, 20842089 (2008)

    Article  Google Scholar 

  21. Xu, H., Bodenschatz, E.: Motion of inertial particles with sizes larger than Kolmogorov scales in turbulent flows. Physica D 237, 20952100 (2008)

    Article  Google Scholar 

  22. Calzavarini, E., Volk, R., Bourgoin, M., Leveque, E., Pinton, J.-F., Toschi, F.: Acceleration statistics of finite-sized particles in turbulent flow : the role of Faxén forces. J. Fluid. Mech. 630, 179189 (2009)

    Article  Google Scholar 

  23. Naso, A., Prosperetti, A.: The interaction between a solid particle and a turbulent flow. New J. Physics. 12, 33–40 (2010)

    Article  Google Scholar 

  24. Zeng, L., Balachandar, S., Fischer, P.: Wall-induced forces on a rigid sphere at finite Reynolds numbers. J. Fluid Mech. 536, 1–25 (2005)

    Article  MATH  Google Scholar 

  25. Homann, H., Bec, J.: Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 81–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Homann, H., Bec, J., Grauer, R.: Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer. J. Fluid Mech. 721, 155–179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Uhlmann, M.: Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20, 053305 (2008)

    Article  Google Scholar 

  28. Garcia-Villalba, M., Kidanemariam, A., Uhlmann, M.: DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging. Int. J. Multiphase Flow 46, 54–74 (2012)

    Article  Google Scholar 

  29. Kidanemariam, A., Chan-Braun, C., Doychev, T., Uhlmann, M.: Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New. J. Physics 15, 025031 (2013)

    Google Scholar 

  30. Zamansky, R., Vinkovic, I., Gorokhovski, M.: Acceleration statistics of solid particles in turbulent channel flow. Phys. Fluids 23, 113304 (2011)

    Article  Google Scholar 

  31. Buffat, M., Le Penven, L., Cadiou, A.: An efficient spectral method based on an orthogonal decomposition of the velocity for transition analysis in wall bounded flow. Comput. Fluids 42, 62–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particuate flows. J. Comput. Phys 209, 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laadhari, F.: On the evolution of maximum turbulent kinetic energy production in a channel flow. Phys. Fluids 14, 65–68 (2002)

    Article  Google Scholar 

  34. Laadhari, F.: Reynolds number effect on the dissipation function in wall-bounded flows. Phys. Fluids 19, 038101 (2007)

    Article  Google Scholar 

  35. Vanella, M., Balaras, E.: A moving-least-squares reconstruction for embedded-boundary formulations. J. Computational Physics 228, 6617–6628 (2009)

    Article  MATH  Google Scholar 

  36. Pinelli, A., Naqavi, I.Z., Piomelli, U., Favier, J.: Immersed-Boundary Methods for General Finite-Difference and Finite-Volume Navier-Stokes Solvers. J. Computational Physics 229, 90739091 (2010)

    Article  MathSciNet  Google Scholar 

  37. Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.: A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25, 755794 (1999)

    Article  Google Scholar 

  38. Zovatto, L., Pedrizzetti, G.: Flow about a circular cylinder between parallel walls. J. Fluid Mech. 440, 1–25 (2001)

    Article  MATH  Google Scholar 

  39. Chen, J.-H., Pritchard, W.G., Tavener, S.J.: Bifurcation for flow past a cylinder between parallel planes. J. Fluid Mech. 284, 23–41 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mordant, N., Pinton, J.-F.: Velocity measurement of a settling sphere. Eur. Phys. J. B 18, 343–352 (2000)

    Article  Google Scholar 

  41. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Academic Press, New York (1978)

    Google Scholar 

  42. Vinkovic, I., Doppler, D., Lelouvetel, J., Buffat, M.: Direct numerical simulation of particle interaction with ejections in turbulent channel flows. Int. J. Multiphase Flow 37, 187–197 (2011)

    Article  Google Scholar 

  43. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  44. Shao, X., Wu, T., Yu, Z.: Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319–344 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen, L., Coleman, S.W., Vassilicos, J.C., Hu, Z.: Acceleration in turbulent channel flow. J. Turbul 11, 1–23 (2010)

    Article  MathSciNet  Google Scholar 

  46. Lashgari, I., Picano, F., Breugem, W.-P., Brandt, L.: Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Phys. Rev. Lett. 113, 254502 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Vinkovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Vinkovic, I. & Buffat, M. Acceleration Statistics of Finite-Size Particles in Turbulent Channel Flow in the Absence of Gravity. Flow Turbulence Combust 96, 183–205 (2016). https://doi.org/10.1007/s10494-015-9651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9651-z

Keywords

Navigation