Skip to main content
Log in

Riblet Flow Model Based on an Extended FIK Identity

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large Eddy Simulations of zero-pressure-gradient turbulent boundary layers over riblets have been conducted. All along the controlled domain, riblets maintain a significant 11 % drag reduction with respect to the flat plate at the same R e τ (from 250 to 450). To compare the flows above riblets and a reference smooth wall, an appropriate vertical shift between the two surfaces is required. In the present study, the “vertical origin” is set using the identity of Fukagata, Iwamoto and Kasagi (FIK) in Phys. Fluids, vol. 14, 2002, L73. This identity, which provides a physically meaningful decomposition of the skin friction, has been extended to complex wall surfaces and constitutes the basis for the derivation of a new virtual origin. Using this FIK-based origin, it is shown that the complex interactions between the riblets and the near-wall turbulent structures can be taken into account by a simple shift of the two axes of the mean and turbulent velocity profiles. The appropriate upward shift Δu +, typical for drag reduction, is directly dependent on the skin friction on the riblets and on the reference smooth plate at the same R e τ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walsh, M.J., Weinstein, L.M.: Drag and heat transfer on surfaces with small longitudinal fins. AIAA Paper 78-1161 (1978)

  2. Hooshmand, D., Youngs, R.A., Wallace, J.M.: An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes. AIAA Paper 83-0230 (1983)

  3. Bechert, D.W., Bruse, M., Hage, W., Van Der Hoeven, J.G.T., Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997)

    Article  Google Scholar 

  4. Chu, D.C., Karniadakis, G.E.: A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. J. Fluid Mech. 250, 1–42 (1993)

    Article  Google Scholar 

  5. Choi, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503–539 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coustols, E., Savill, A.M.: Turbulent skin-friction drag reduction by active and passive means: parts 1 and 2. Special course on skin-friction drag reduction (AGARD Report 786) (1992)

  7. Bechert, D.W., Bartenwerfer, M.: The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105–129 (1989)

    Article  Google Scholar 

  8. Luchini, P., Manzo, F., Pozzi, A.: Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109 (1991)

    MATH  Google Scholar 

  9. Jiménez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)

    Article  Google Scholar 

  10. Goldstein, D.B., Tuan, T.C.: Secondary flow induced by riblets. J. Fluid Mech. 363, 115–151 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. García-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Philos. Trans. R. Soc. Lond. A 369(1940), 1412–1427 (2011)

    Article  Google Scholar 

  12. García-Mayoral, R., Jiménez, J.: Scaling of turbulent structures in riblet channels up to Re τ ≈550. Phys. Fluids 24(10), 105101 (2012)

    Article  Google Scholar 

  13. Choi, K.S.: Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mech. 208, 417–458 (1989)

    Article  Google Scholar 

  14. Coles, D.: The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191–226 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  15. Perry, A.E., Joubert, P.N.: Rough wall boundary layers in adverse pressure gradients. J. Fluid Mech. 17, 193–211 (1963)

    Article  MATH  Google Scholar 

  16. Gallagher, J.A., Thomas, A.S.W.: Turbulent boundary layer characteristics over streamwise grooves. AIAA Paper 84-2185 (1984)

  17. Bandyopadhyay, P.R.: Review—Mean flow in turbulent boundary layers disturbed to alter skin friction. AIAA Paper 86-1126 (1986)

  18. Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), L73 (2002)

    Article  Google Scholar 

  19. Gomez, T., Flutet, V., Sagaut, P.: Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Phys. Rev. E 89, 035,301 (2009)

    Article  Google Scholar 

  20. Peet, Y., Sagaut, P.: Theoretical prediction of turbulent skin friction on geometrically complex surfaces. Phys. Fluids 21(10), 105,105 (2009)

    Article  Google Scholar 

  21. Klumpp, S., Meinke, M., Schröder, W.: Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85(1), 57–71 (2010)

    Article  MATH  Google Scholar 

  22. Strand, J.S., Goldstein, D.B.: Direct numerical simulations of riblets to constrain the growth of turbulent spots. J. Fluid Mech. 668, 267–292 (2011)

    Article  MATH  Google Scholar 

  23. Duan, L., Choudhari, M.M.: Direct numerical simulations of high-speed turbulent boundary layers over riblets. In: 52nd Aerospace Sciences Meeting, vol. 0934 (2014)

  24. Lee, J.H., Lee, S.H., Kim, K., Sung, H.J.: Structure of the turbulent boundary layer over a rod-roughened wall. Int. J. Heat Fluid Flow 30, 1087–1098 (2009)

    Article  Google Scholar 

  25. Mary, I., Sagaut, P.: Large eddy simulation of flow around an airfoil near stall. AIAA J. 40(6), 1139 (2002)

    Article  Google Scholar 

  26. Lenormand, E., Sagaut, P., Ta Phuoc, L., Comte, P.: Subgrid-scale models for large-eddy simulation of compressible wall bounded flows. AIAA J. 38(8), 1340–1350 (2000)

    Article  Google Scholar 

  27. Pamiès, M., Weiss, P.E., Garnier, E., Deck, S., Sagaut, P.: Generation of synthetic turbulent inflow data for large-eddy simulation of spatially-evolving wall-bounded flows. Phys. Fluids 21(4), 045103 (2009)

    Article  Google Scholar 

  28. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27(4), 585–593 (2006)

    Article  Google Scholar 

  29. Larchevêque, L., Sagaut, P., Mary, I., Labbé, O., Comte, P.: Large-eddy simulation of a compressible flow past a deep cavity. Phys. Fluids 15(1), 193–210 (2003)

    Article  Google Scholar 

  30. Laurent, C., Mary, I., Gleize, V., Lerat, A., Arnal, D.: DNS database of a transitional separation bubble on a flat plate and application to RANS modeling validation. Comput. Fluids 61, 21–30 (2011)

    Article  Google Scholar 

  31. Stenzel, V., Wilke, Y., Hage, W.: Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Prog. Org. Coat. 70, 224–229 (2011)

    Article  Google Scholar 

  32. Maruyama, D., Bailly, D., Carrier, G.: High-quality mesh deformation using quaternions for orthogonality preservation. AIAA J. 52(12), 2712–2729 (2014)

    Article  Google Scholar 

  33. Deck, S., Weiss, P.E., Pamiès, M., Garnier, E.: Zonal Detached Eddy Simulation of a spatially developing flat plate turbulent boundary layer. Comput. Fluids 48, 1–15 (2011)

    Article  MATH  Google Scholar 

  34. Choi, H., Moin, P.: Effects of the computational time step on numerical solutions of turbulent flow. J. Comp. Phys. 113, 1–4 (1994)

    Article  MATH  Google Scholar 

  35. Mignot, E., Barthelemy, E., Hurther, D.: Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J. Fluid Mech. 618, 279–303 (2009)

    Article  MATH  Google Scholar 

  36. Wu, X., Moin, P.: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)

    Article  MATH  Google Scholar 

  38. Smits, A.J., Matheson, N., Joubert, P.N.: Low-Reynolds-number turbulent boundary layers in zero and favourable pressure gradients. J. Ship Res. 27, 147–157 (1983)

    Google Scholar 

  39. Nagib, H.M., Chauhan, K.A., Monkewitz, P.A.: Approach to an asymptotic state for zero pressure gradient turbulent boundary layer. Philos. Trans. R. Soc. Lond. A 365, 755–770 (2007)

    Article  MATH  Google Scholar 

  40. Ricco, P., Ottonelli, C., Hasegawa, Y., Quadrio, M.: Changes in turbulent dissipation in a channel flow with oscillating walls. J. Fluid Mech. 700, 77–104 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hasegawa, Y., Quadrio, M., Frohnapfel, B.: Numerical simulation of turbulent duct flows with constant power input. J. Fluid Mech. 750, 191–209 (2014)

    Article  Google Scholar 

  42. Walsh, M.J., Lindemann, A.M.: Optimization and application of riblets for turbulent drag reduction. AIAA Paper 84-0347 (1984)

  43. Mehdi, F., Johansson, T.G., White, C.M., Naughton, J.W.: On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Exp. Fluids 55, 1656 (2014)

    Article  Google Scholar 

  44. Deck, S., Renard, N., Laraufie, R., Weiss, P.E.: Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to R e δ =13650. J. Fluid Mech. 743, 202–248 (2014)

    Article  Google Scholar 

  45. Mehdi, F., White, C.M.: Integral form of the skin friction coefficient suitable for experimental data. Exp. Fluids 50, 43–51 (2011)

    Article  Google Scholar 

  46. Jiménez, J., Pinelli, A.: The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  47. Bechert, D.W., Bartenwerfer, M., Hoppe, G., Reif, W.E.: Drag reduction mechanisms derived from shark skin. In: 15th Congress of the international council of the aeronautical sciences (ICAS), vol. 86-1.8.3, pp. 1044–1068. American Institute of Aeronautics and Astronautics, New York, London, England (1986)

  48. Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. Int. J. Hydrogen Energy 34(21), 8964–8973 (2009)

    Article  Google Scholar 

  49. Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605 (1992)

    Article  Google Scholar 

  50. Lumley, J.: Drag reduction in turbulent flow by polymer additives. J. Polym. Sci. Macromol. Rev. 7, 263–290 (1973)

    Article  Google Scholar 

  51. Aupoix, B., Pailhas, G., Houdeville, R.: Towards a general strategy to model riblet effects. AIAA J. 50(3), 708–716 (2012)

    Article  Google Scholar 

  52. Iwamoto, K., Fukagata, K., Kasagi, N., Suzuki, Y.: Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers. Phys. Fluids 17, 011702 (2005)

    Article  Google Scholar 

  53. Fukagata, K., Kasagi, N., Koumoutsakos, P.: A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703 (2006)

    Article  Google Scholar 

  54. Min, T., Kim, J.: Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16(7), L55 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury Bannier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannier, A., Garnier, É. & Sagaut, P. Riblet Flow Model Based on an Extended FIK Identity. Flow Turbulence Combust 95, 351–376 (2015). https://doi.org/10.1007/s10494-015-9624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9624-2

Keywords

Navigation