Skip to main content
Log in

An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The paper addresses the issue of the significant delay of transition from RANS to LES in shear layers, which is known to affect the original version of Detached-Eddy Simulation (DES) on typical anisotropic grids. A common remedy has been to disable the subgrid scale model, leading to Implicit LES (ILES). Here, enhanced versions of DES are proposed based on new definitions of the subgrid length-scale. Unlike the original definition attached to DES (i.e., simply the maximum local grid spacing) the new ones include solution-dependent kinematic measures which serve as indicators of the nearly 2D grid-aligned flow regions which are typical of the initial region of free and separated shear layers. This brings about a significant reduction of the subgrid viscosity in such regions. This, in turn, unlocks the Kelvin-Helmholtz instability and drastically speeds-up transition to 2D and then 3D flow structures in shear layers. At the same time, the proposed length-scale is not influenced by the smallest grid dimension, unlike the cube root of the cell volume and other recently proposed definitions, and we view this as a physically plausible, safe and therefore preferable length-scale definition. The advantages of these enhanced versions are demonstrated on a set of numerical examples which include isotropic turbulence, a mixing layer, a jet, a boundary layer, and a backward-facing step. The new definitions are as successful as ILES in liberating the early instabilities, while being non-zonal and compatible with later interactions of the turbulent region with solid bodies. The turbulence statistics of the flows and the radiated noise of the jet are also considerably improved, especially with relatively coarse lateral grid spacings. The new definitions will also improve LES, particularly with the Smagorinsky model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spalart, P.R.: Detached-Eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  Google Scholar 

  2. Spalart, P.R.: Young person’s guide to detached-eddy simulation grids. Tech. Rep. NASA CR-2001-211032. Langley Res. Center, Hampton, Va (2001). http://ntrs.nasa.gov/search.jsp?R=20010080473

  3. Spalart, P.R., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z (eds.) Advances in DNS/LES. Greyden Press, Columbus (1997)

    Google Scholar 

  4. Shur, M.L., Spalart, P.R., Strelets, M. Kh., Travin, A.K.: Towards the prediction of noise from jet engines. Int. J. Heat Fluid Flow 24, 551–561 (2003)

    Article  Google Scholar 

  5. Shur, M.L., Spalart, P.R., Strelets, M.Kh.: Noise prediction for increasingly complex jets, Part I: Methods and tests. Int. J. of Aeroacoustics 4(3+4), 213–246 (2005)

    Article  Google Scholar 

  6. Uzun, A., Hussaini, M.J.: Investigation of high frequency noise generation in the near-nozzle region of a jet using large eddy simulation. Theor. Comput. Fluid Dyn. 21, 291–321 (2007)

    Article  MATH  Google Scholar 

  7. Chauvet, N., Deck, S., Jacquin, L.: Zonal detached eddy simulation of a controlled propulsive jet. AIAA J. 45(10), 2458–2473 (2007)

    Article  Google Scholar 

  8. Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P., Strelets, M., Thiele, F., Travin, A.: Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES. Notes on Numerical Fluid Mechanics and Multidisciplinary Design 130, 187–202 (2015)

  9. Shur, M. L., Spalart, P. R., Strelets, M., Travin, A.: Detached-eddy simulation of an airfoil at high angle of attack. In: Rodi, W., Laurence, D. (eds.) Engineering Turbulence Modelling and Experiments 4, pp 669–678. Elsevier Sci, Oxford (1999)

    Chapter  Google Scholar 

  10. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 83–200 (1999)

    Article  Google Scholar 

  11. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.Kh., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  12. Shur, M.L., Spalart, P.R., Strelets, M.Kh., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  13. Deck, S.: Recent improvements in the zonal detached-eddy simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012)

    Article  Google Scholar 

  14. Nomura, K. K., Post, G. K.: The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J. Fluid Mech 377, 65–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Strelets, M.: Detached eddy simulation of massively separated flows. AIAA Paper, AIAA 2001–0879 (2001)

  16. Shur, M., Strelets, M., Travin, A.: High-order implicit multi-block Navier-Stokes code: Ten-years experience of application to RANS/DES/LES/DNS of turbulent flows. In: 7th Symposium on Overset Composite Grids & Solution Technology, Huntington Beach, California. http://cfd.spbstu.ru/agarbaruk/c/document_library/DLFE-42505.pdf (2004)

  17. Rogers, S.E., Kwak, D.: An upwind differencing scheme for the time accurate incompressible navier-stokes equations. AIAA Paper, AIAA 88–2583 (1988)

  18. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys 46, 357–378 (1981)

    Article  MathSciNet  Google Scholar 

  19. Travin, A., Shur, M., Strelets, M., Spalart, P.R. In: Friedrich, R., Rodi, W. (eds.): Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. Springer, Netherlands (2002)

  20. Comte-Bellot, G., Corrsin, S.: Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, “isotropic” turbulence. J. Fluid Mech 48, 273–337 (1971)

    Article  Google Scholar 

  21. Delville, J.: La décomposition orthogonale aux valeurs propres et l’analyse de l’organisation tridimensionnelle des écoulements turbulents cisaillés libres, Ph.D. thesis, Department of Fundamental and Applied Sciences. University of Poitiers (1995)

  22. Kok, J., van der Ven, H.: Destabilizing free shear layers in XLES using a stochastic subgrid-scale model. In: Peng, S.-H., Doerffer, P., Haase, W (eds.) Progress in Hybrid RANS-LES Modelling, NNFM, vol. 111, pp 179–189. Springer, Berlin (2010)

    Chapter  Google Scholar 

  23. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper, AIAA 1992–0439 (1992)

  24. Viswanathan, K.: Aeroacoustics of hot jets. J. Fluid Mech. 516, 39–82 (2004)

    Article  MATH  Google Scholar 

  25. Lau, J.C., Morris, P.J.M., Fisher, M.J.: Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93, 1–27 (1979)

    Article  Google Scholar 

  26. Lau, J.C.: Effects of exit Mach number and temperature on mean-flow and turbulence characteristics in round jets. J. Fluid Mech. 105, 193–218 (1981)

    Article  Google Scholar 

  27. Simonich, C., Narayanan, S., Barber, T.J., Nishimura, M.: Aeroacoustic characterization, noise reduction and dimensional scaling effects of high subsonic jets. AIAA J. 39, 2062–2069 (2001)

    Article  Google Scholar 

  28. Arakeri, V.H., Krothapalli, A., Siddavaram, V., Alkislar, M.B., Lourenco, L.M.: On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech 490, 75–98 (2003)

    Article  MATH  Google Scholar 

  29. Bridges, J, Wernet, M.P.: Establishing consensus turbulence statistics for hot subsonic Jets. AIAA Paper, AIAA 2010–3751 (2010)

  30. Spalart, P.R., Shur, M.L., Strelets, M.Kh.: Added sound sources in jets; theory and simulation. Int. J. Aeroacoustics 8, 511–534 (2009)

    Article  Google Scholar 

  31. Shur, M.L., Spalart, P.R., Strelets, M. Kh.: LES-based evaluation of a microjet noise reduction concept in static and flight conditions. J. Sound Vib 330, 4083–4097 (2011)

    Article  Google Scholar 

  32. Viswanathan, K., Shur, M.L., Spalart, P.R., Strelets, M.Kh.: Comparisons between experiment and large-eddy simulation for jet noise. AIAA J 45, 1952–1966 (2007)

    Article  Google Scholar 

  33. Shur, M.L., Spalart, P.R., Strelets, M.Kh., Garbaruk, A.V.: Analysis of jet-noise-reduction-concepts by large-eddy simulation. Int. J. Aeroacoustics 6(3), 243–287 (2007)

    Article  Google Scholar 

  34. Viswanathan, K., Shur, M.L., Spalart, P.R., Strelets, M.Kh.: Flow and noise predictions for single and dual-stream beveled nozzles. AIAA J 46, 601–626 (2008)

    Article  Google Scholar 

  35. Shur, M.L., Spalart, P.R., Strelets, M.Kh.: Noise prediction for underexpanded jets in static and flight conditions. AIAA J 49, 2000–2017 (2011)

    Article  Google Scholar 

  36. Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. J. Heat Transfer 107, 922–929 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Kh. Strelets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shur, M.L., Spalart, P.R., Strelets, M.K. et al. An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows. Flow Turbulence Combust 95, 709–737 (2015). https://doi.org/10.1007/s10494-015-9618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9618-0

Keywords

Navigation