Skip to main content
Log in

Numerical Simulations of the Sandia Flame D Using the Eddy Dissipation Concept

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A turbulent piloted methane/air diffusion flame (Sandia Flame D) is calculated using both compressible Reynolds-averaged and large-eddy simulations (RAS and LES, respectively). The Eddy Dissipation Concept (EDC) is used for the turbulence-chemistry interaction, which assumes that molecular mixing and the subsequent combustion occur in the fine structures (smaller dissipative eddies, which are close to the Kolmogorov length scales). Assuming the full turbulence energy cascade, the characteristic length and velocity scales of the fine structures are evaluated using a standard k- 𝜖 turbulence model for RAS and a one-equation eddy-viscosity sub-grid scale model for LES. Finite-rate chemical kinetics are taken into account by treating the fine structures as constant pressure and adiabatic homogeneous reactors (calculated as a system of ordinary-differential equations (ODEs)) described by a Perfectly Stirred Reactor (PSR) concept. A robust implicit Runge-Kutta method (RADAU5) is used for integrating stiff ODEs to evaluate reaction rates. The radiation heat transfer is treated by the P1-approximation. The assumed β-PDF approach is applied to assess the influence of modeling of the turbulence-chemistry interaction. Numerical results are compared with available experimental data. In general, there is good agreement between present simulations and measurements both for RAS and LES, which gives a good indication on the adequacy and accuracy of the method and its further application for turbulent combustion simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ANSYS FLUENT R12. Theory guide. Tech. rep., Ansys Inc (2009)

  2. Barlow, R.S., Frank, J.H.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Article  Google Scholar 

  3. Barlow, R.S., Fiechtner, G.J., Carter, C.D., Chen, J.-Y.: Experiments on the scalar structure of turbulent CO/H2/N2 jet flames. Combust. Flame 120, 549–569 (2000)

    Article  Google Scholar 

  4. Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C., Lissianski, V., Smith, G.P., Golden, D.M., Frenklach, M., Goldenberg, M.: GRI-Mech (2008). http://www.me.berkeley.edu/gri-mech/. Accessed Feb 2013

  5. Chase, M.: NIST-JANAF thermochemical tables, 4th edn. In: Journal of Physical and Chemical Reference Data, Monographs and Supplements, vol 9 (1998)

  6. Cheng, P.: Dynamics of a radiating gas with application to flow over a wavy wall. AIAA J. 4(2), 238–245 (1966)

    Article  Google Scholar 

  7. Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff- body stabilised nonpremixed flames. Combust. Flame 114, 119–148 (1998)

    Article  Google Scholar 

  8. Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151(1–2), 46–60 (2007)

    Article  Google Scholar 

  9. Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G.H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32 (2), 1779–1786 (2009)

    Article  Google Scholar 

  10. Ertesvåg, I.S., Magnussen, B.F: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159, 213–235 (2000)

    Article  Google Scholar 

  11. Feymark, A., Alin, N., Bensow, R., Fureby, C.: Numerical simulation of an oscillating cylinder using large eddy simulation and implicit large eddy simulation. J. Fluids Eng. 134, 031205 (2012)

    Article  Google Scholar 

  12. Frank, J.H., Barlow, R.S., Lundquist, C.: Radiation and nitric oxide formation in turbulent non-premixed jet flames. Proc. Comb. Inst. 28, 447–454 (2000)

    Article  Google Scholar 

  13. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, New York (2009)

    Book  MATH  Google Scholar 

  14. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: Dynamic subgrid-scale eddy viscosity model. In: Summer Workshop, Center for Turbulence Research. Stanford (1996)

  15. Geurts, B.: Elements of Direct and Large-Eddy Simulation. R.T. Edwards, Philadelphia (2004)

    Google Scholar 

  16. Gran, I.R., Magnussen, B.F.: A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119, 191–217 (1996)

    Article  Google Scholar 

  17. Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 2nd rev. edn. Springer-Verlag (1996)

  18. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hestens, M., Steifel, E.: Methods of conjugate gradients for solving systems of algebraic equations. J. Res. Nat. Bur. Stand. 29, 409–436 (1952)

    Article  Google Scholar 

  20. Hewson, J.C., Kerstein, A.R.: Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2 flames. Combust. Theory Model. 5, 669–897 (2001)

    Article  MATH  Google Scholar 

  21. Hossain, M., Jones, J.C., Malalasekera, W.: Modelling of a bluff-Body nonpremixed flame using a coupled radiation/flamelet combustion model. Flow Turbul. Combust. 67, 217–234 (2001)

    Article  MATH  Google Scholar 

  22. Hottel, H.C, Sarofim, A.F.: Radiative Transfer. McGraw-Hill, New York (1967)

    Google Scholar 

  23. Hutchinson, B., Raithby, G.: A multigrid method based on the additive correction strategy. J. Numer. Heat. Transf. 9, 511–37 (1986)

    Google Scholar 

  24. Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jasak, H., Weller, H.G., Gosman, A.D., High resolution, N.V.D: differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Meth. Fluids 31, 431–449 (1999)

    Article  MATH  Google Scholar 

  26. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jones, W.P., Whitelaw, J.H.: Calculation methods for reacting turbulent flows: A review. Combust. Flame 48, 1–26 (1982)

    Article  Google Scholar 

  28. Jones, W.P., Prasad, V.N.: Large eddy simulation of the Sandia Flame Series (D-F) using the Eulerian stochastic field method. Combust. Flame 157, 1621–1636 (2010)

    Article  Google Scholar 

  29. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Method Appl. M 3(2), 269–289 (1974)

    Article  MATH  Google Scholar 

  30. Lilleberg, B.: On mathematical modeling and numerical simulation of chemical kinetics in turbulent lean premixed combustion, PhD thesis, Norwegian University of Science and Technology, 2011:206, Trondheim (2011)

  31. Lilleberg, B., Christ, D., Ertesvåg, I.S., Rian, K.E., Kneer, R.: Numerical simulation with an extinction database for use with the Eddy dissipation concept for turbulent combustion. Flow Turbul. Combust. 91, 319–346 (2013)

    Article  Google Scholar 

  32. Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids 80, 408–422 (2013)

    Article  MATH  Google Scholar 

  33. Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul. Combust. 89, 491–518 (2012)

    Article  Google Scholar 

  34. Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Large-eddy simulation of the flow over a circular cylinder at Reynolds number, 2×104. Flow Turbul. Combust. 92, 673–698 (2014)

    Article  Google Scholar 

  35. Lysenko, D.A., Ertesvåg, I.S., Rian, K.E., Lilleberg, B., Christ D.: Numerical simulation of turbulent flames using the Eddy dissipation concept with detailed chemistry. In: Skallerud, B., Andersson, H.I. (eds.) Computational Mechanics, pp. 159–178. Trondheim (2013)

  36. Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Numerical simulation of non-premixed turbulent combustion using the Eddy dissipation concept and comparing with the steady laminar flamelet model. Flow Turbul. Combust. doi:10.1007/s10494-014-9551-7 (2014)

  37. Magnussen, B.F., Hjertager, B.H: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1976)

    Article  Google Scholar 

  38. Magnussen, B.F.: Modeling of NOx and soot formation by the Eddy dissipation concept. Int. flame research foundation, 1st topic oriented technical meeting, 17-19 Oct. 1989. Amsterdam, Holland

  39. Magnussen, B.F.: The Eddy dissipation concept a bridge between science and technology. In: ECCOMAS Thermal Conference on Computational Combustion. Lisbon (2005)

  40. Marshak, R.E.: Note on the spherical harmonics method as applied to the Milne problem for a sphere. Phys. Rev. 71, 443–446 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  41. McGuirk, J.J., Rodi, W.: The calculation of three-dimensional turbulent free jets. In: Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds.) In Turbulent Shear Flows I: Selected Papers from the First International Symposium on Turbulent Shear Flows, pp. 71–83. Springer-Verlag, Germany (1979)

  42. Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput. 31, 148–162 (1977)

    MATH  MathSciNet  Google Scholar 

  43. Panjwani, B.: Large Eddy simulation of turbulent combustion with chemical kinetics. PhD thesis, Norwegian University of Science and Technology, 2011:73, Trondheim (2011)

  44. Pitsch, H., Steiner, H.: Large-Eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia Flame D). Phys. Fluids 12 (10), 2541–2554 (2000)

    Article  Google Scholar 

  45. Pitsch, H.: Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames original research article. Combust. Flame 123 (3), 358–374 (2000)

    Article  Google Scholar 

  46. Pope, S.B.: An explanation of the turbulent round-jef/plane-jet anomaly. AIAA J. 16, 279–281 (1978)

    Article  Google Scholar 

  47. Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143, 56–78 (2005)

    Article  Google Scholar 

  48. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–32 (1983)

    Article  MATH  Google Scholar 

  49. Sagaut, P.: Large Eddy simulation for incompressible flows, 3rd edn. Springer Berlin (2006)

  50. Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames. Combust. Flame 135, 185–190 (2003)

    Article  Google Scholar 

  51. Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Trans-T. ASME 104 (4), 602–608 (1982)

    Article  Google Scholar 

  52. Vandoormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. 7, 147–163 (1984)

    Google Scholar 

  53. Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4th edn. Springer, Berlin Heidelberg New York (2006)

  54. Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convection schemes – a unified approach. J. Comput. Phys. 224, 182–207 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  55. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: Tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  56. Yoshizawa, A.: Statistical theory for compressible shear flows, with the application to subgrid modelling. Phys. Fluids 29(2152), 1416–1429 (1986)

    Google Scholar 

  57. Zahirović, S., Scharler, R., Kilpinen, P., Obernberger, I.: Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combust. Theory Model. 15, 61–87 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Lysenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, D.A., Ertesvåg, I.S. & Rian, K.E. Numerical Simulations of the Sandia Flame D Using the Eddy Dissipation Concept. Flow Turbulence Combust 93, 665–687 (2014). https://doi.org/10.1007/s10494-014-9561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9561-5

Keywords

Navigation