Skip to main content
Log in

Simultaneous Measurements of Temperature and CO Concentration in Stagnation Stabilized Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An impinging jet burner was developed to investigate flame-wall interactions (FWI) using laser based diagnostics. CO concentrations were measured with two-photon laser-induced fluorescence (LIF) in combination with coherent anti-Stokes Raman spectroscopy (CARS) gas phase temperature measurements. Besides being the principal factor in chemical kinetics, temperature data is required to correct the CO LIF data for various factors like density variation, quenching and variation in the Boltzmann population. Phosphor thermometry was used to determine surface temperatures of the wall and to estimate the heat flux. In an parameter study Reynolds numbers and fuel equivalence ratio were varied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y., Bray, K.N.C., Rogg, B.: Temporally and spatially resolved investigation of flame propagation and extinction in the vicinity of walls. Combust. Sci. Technol. 113(1), 255–271 (1996)

    Article  Google Scholar 

  2. Schoenung, M., Hanson, R.K.: CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques. Combust. Sci. Technol. 24(5), 227–237 (1980)

    Article  Google Scholar 

  3. Nooren, P.A., Versluis, M., van der Meer, T.H., Barlow, R.S., Frank, J.H.: Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Appl. Phys. B 71, 95–111 (2000). doi:10.1007/s003400000278

    Article  Google Scholar 

  4. Wang, J., Maiorov, M., Baer, D.S., Garbuzov, D.Z., Connolly, J.C., Hanson, R.K.: In situ combustion measurements of CO with diode-laser absorption near 2.3 μm. Appl. Opt. 39(30), 5579–5589 (2000)

    Article  Google Scholar 

  5. Chao, X., Jeffries, J.B., Hanson, R.K.: Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers. Meas. Sci. Technol. 20(11), 115201 (2009)

    Article  Google Scholar 

  6. Aldén, M., Wallin, S., Wendt, W.: Applications of two-photon absorption for detection of CO in combustion gases. Appl. Phys. B 33, 205–208 (1984)

    Article  Google Scholar 

  7. Seitzman, J.M., Haumann, J., Hanson, Ronald K.: Quantitative two-photon LIF imaging of carbon monoxide in combustion gases. Appl. Opt. 26, 2892–2899 (1987)

    Article  Google Scholar 

  8. Linow, S., Dreizler, A., Janicka, J., Hassel, E.P.: Comparison of two-photon excitation schemes for CO detection in flames. Appl. Phys. B 71, 689–696 (2000)

    Article  Google Scholar 

  9. Rensberger, K.J., Jeffries, J.B., Copeland, R.A., Kohse-Höinghaus, K., Wise, M.L., Crosley, D.R.: Laser-induced fluorescence determination of temperatures in low pressure flames. Appl. Opt. 28(17), 3556–3566 (1989)

    Article  Google Scholar 

  10. Huber, K.P., Herzberg, G.: Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules. Van Nostrand, New York (1979)

    Google Scholar 

  11. Kulatilaka, W.D., Patterson, B.D., Frank, J.H., Settersten, T.B.: Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames. Appl. Opt. 47(26), 4672–4683 (2008)

    Article  Google Scholar 

  12. Settersten, T.B., Dreizler, A., Farrow, R.L.: Temperature- and species-dependent quenching of CO B probed by two-photon laser-induced fluorescence using a picosecond laser. J. Chem. Phys. 117(7), 3173–3179 (2002)

    Article  Google Scholar 

  13. Barlow, R.S., Frank, J.H., Fiechtner, G.J.: Comparison of CO Measurements by Raman Scattering and Two-Photon LIF in Laminar and Turbulent Methane Flames. Spring Meeting of the Western States Section/The Combustion Institute (1998)

  14. Gregor, M.A., Dreizler, A.: A quasi-adiabatic laminar flat flame burner for high temperature calibration. Meas. Sci. Technol. 20, 065402 (2009)

    Article  Google Scholar 

  15. Brübach, J., van Veen, E., Dreizler, A.: Combined phosphor and CARS thermometry at the wall-gas interface of impinging flame and jet systems. Exp. Fluids 44, 897–904 (2008)

    Article  Google Scholar 

  16. Eckbreth, A.C.: Laser Diagnostics for Combustion Temperature and Species. CRC, 2nd edn. (1996)

  17. Brübach, J., Hage, M., Janicka, J., Dreizler, A.: Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor. Proc. Combust. Inst. 32(1), 855–861 (2009)

    Article  Google Scholar 

  18. Brübach, J., Dreizler, A., Janicka, J.: Gas compositional and pressure effects on thermographic phosphor thermometry. Meas. Sci. Technol. 18(3), 764–770 (2007)

    Article  Google Scholar 

  19. Bruneaux, G., Poinsot, T., Ferziger, J.H.: Premixed flame/wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191–219 (1997)

    Article  MATH  Google Scholar 

  20. Brübach, J., Zetterberg, J., Omrane, A., Li, Z.S., Alden, M., Dreizler, A.: Determination of surface normal temperature gradients using thermographic phosphors and filtered Rayleigh scattering. Appl. Phys. B 84, 537–541 (2006)

    Article  Google Scholar 

  21. Salem, M., Staude, S., Bergmann, U., Atakan, B.: Heat flux measurements in stagnation point methane/air flames with thermographic phosphors. Exp. Fluids 49, 797–807 (2010)

    Article  Google Scholar 

  22. Fuyuto, T., Kronemayer, H., Lewerich, B., Brübach, Jan., Fujikawa, T., Akihama, K., Dreier, T., Schulz, C.: Temperature and species measurement in a quenching boundary layer on a flat-flame burner. Exp. Fluids 49, 783–795 (2010)

    Article  Google Scholar 

  23. Egolfopoulos, F.N., Zhang, H., Zhang, Z.: Wall effects on the propagation and extinction of steady, strained, laminar premixed flames. Combust. Flame 109(1–2), 237–252 (1997)

    Article  Google Scholar 

  24. Goodwin, D.G.: An Open-Source, Extensible Software Suite for CVD Process Simulation (2003)

  25. Gri-mech website. http://www.me.berkeley.edu/grimech (2006)

  26. Stricker, W., Meier, W.: The use of CARS for temperature measurements in practical flames. Trends in Appl. Spectrosc. 1, 231–260 (1993)

    Google Scholar 

  27. Eckbreth, A.C.: BOXCARS: Crossed-beam phase-matched CARS generation in gases. Appl. Phys. Lett. 32 (7), 421–423 (1978)

    Article  Google Scholar 

  28. Clark, G., Farrow, R.L.: CARSFT Code. Sandia National Laboratory, Livermore, CA (1990)

    Google Scholar 

  29. Tobias, I., Fallon, R.J., Vanderslice, J.T.: Potential Energy Curves for CO*. J. Chem. Phys. 33(6), 1683–1640 (1960)

    Article  Google Scholar 

  30. Tsuji, H., Yamaoka, I.: The counterflow diffusion flame in the forward stagnation region of a porous cylinder. Symp. (Int.) on Comb. 11(1), 979–984 (1967)

    Article  Google Scholar 

  31. Kissel, T., Baum, E., Dreizler, A., Brübach, J.: Two-dimensional thermographic phosphor thermometry using a CMOS high speed camera system. Appl. Phys. B 96, 731–734 (2009). doi:10.1007/s00340-009-3626-5

    Article  Google Scholar 

  32. Brübach, J., Janicka, J., Dreizler, A.: An algorithm for the characterisation of multi-exponential decay curves. Opt. Laser Eng. 47(1), 75–79 (2009)

    Article  Google Scholar 

  33. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids. McGraw Hill (1987)

  34. Mason, E.A., Saxena, S.C.: Approximate formula for the thermal conductivity of gas mixtures. Phys. Fluid 1, 361–369 (1958)

    Article  MathSciNet  Google Scholar 

  35. VDI - Gesellschaft Verfahrenstechnik und Chemie-ingenieurwesen (eds.): VDI-Wärmeatlas. Springer (2002)

  36. Hofmann, H.M.: Wärmeübergang beim pulsierenden Prallstrahl. PhD thesis, Universität Fridericiana Karlsruhe (2005)

  37. Popp, P., Baum, M.: Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108(3), 327–348 (1997)

    Article  Google Scholar 

  38. Wichman, I.S., Bruneaux, G.: Head-on quenching of a premixed flame by a cold wall. Combust. Flame 103(4), 296–310 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Dreizler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Mann, M., Kissel, T. et al. Simultaneous Measurements of Temperature and CO Concentration in Stagnation Stabilized Flames. Flow Turbulence Combust 90, 723–739 (2013). https://doi.org/10.1007/s10494-011-9384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9384-6

Keywords

Navigation