Skip to main content
Log in

Application of a Synthetic Jet to Control Boundary Layer Separation under Ultra-High-Lift Turbine Pressure Distribution

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The transition and separation processes of the boundary layer developing on a flat plate under a prescribed adverse pressure gradient typical of Ultra-High-Lift low-pressure turbine profiles have been investigated, with and without the application of a synthetic jet (zero net mass flow rate jet). A mechanical piston has been adopted to produce an intermittent flow with zero net mass flow rate. The capability of the device to suppress or reduce the large laminar separation bubble occurring under steady inflow condition at low Reynolds numbers has been experimentally investigated by means of hot-wire measurements. Wall static pressure measurements complement the hot-wire time-resolved velocity results. The paper reports the investigations performed for both steady and controlled conditions. The active device is able to control the laminar separation bubble induced at low Reynolds number conditions by the strong adverse pressure gradient. An overall view of the time-dependent evolution of the controlled boundary layer is provided by the phase-locked ensemble averaging technique, triggered at the synthetic jet frequency. The separated flow transition process, which is detected for the uncontrolled condition, is modified by the synthetic jet in different ways during the blowing and suction phases. Overall, the phase-locked velocity distributions show a reduced separated flow region for the whole jet cycle as compared to the uncontrolled condition. The phase-locked distributions of the random unsteadiness allow the identification of vortical structures growing along the shear layer mainly during the blowing phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hourmouziadis, J.: Aerodynamic Design of Low Pressure Turbines. AGARD Lecture Series, 167 (1989)

  2. Schröder, Th.: Investigation of Blade Row Interaction and Boundary Layer Transition Phenomena in a Multistage Aero Engine Low-Pressure Turbine by Measurements with Hot-Film Probes and Surface-Mounted Hot-Film Gauges. Boundary Layers in Turbomachines, VKI Lecture Series (1991)

  3. Hodson, H.P., Howell, R.J.: The role of transition in high-lift low pressure turbines for aeroengines. Prog. Aerosp. Sci. 41, 419–454 (2005)

    Article  Google Scholar 

  4. Volino, R.J.: Separation control on low-pressure turbine airfoils using synthetic vortex generator jets. ASME J. Turbomach. 125(4), 765–777 (2003)

    Article  Google Scholar 

  5. Zheng, X., Zhou, S., Hou, A., Jiang, Z., Ling, D.: Separation control using synthetic vortex generator jets in axial compressor cascade. Acta Mech. Sin. 22, 521–527 (2006)

    Article  Google Scholar 

  6. Smith, B.L., Glezer, A.: The formation and evolution of synthetic jet. Phys. Fluids 10, 2281–2297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mittal, R., Rampunggoon, P., Udaykumar, H.S.: Interaction of a Synthetic Jet with a Flat Plate Boundary Layer. AIAA paper 2001–2773 (2001)

  8. Lockerby, D.A., Carpenter, P.W., Davies, C.: Numerical simulation of the interaction of microactuators and boundary layers. AIAA J 40, 67–73 (2002)

    Article  Google Scholar 

  9. Smith, D.: Interaction of a syntethic jet with a crossflow boundary layer. AIAA J 40, 2277–2288 (2002)

    Article  Google Scholar 

  10. Amitay, M., Pitt, D., Glazer, A.: Separation control in duct flows. AIAA J 39, 616–620 (2002)

    Google Scholar 

  11. Baysal, O., Köklü, M., Erbas, N.: Design optimization of micro synthetic jet actuator for flow separation control. ASME J. Fluids Eng. 128, 1053–1062 (2006)

    Article  Google Scholar 

  12. Zhang, P.F., Wang, J.J., Feng L.H.: Review of zero-net-mass-flux jet and its application in separation flow control. Sci. China Ser. E-Tech. Sci. 51(9), 1315–1344 (2008)

    Article  Google Scholar 

  13. Mayle, R.E.: The role of laminar-turbulent transition in gas turbine engines. ASME J. Turbomach. 113, 509–531 (1991)

    Article  Google Scholar 

  14. Hatman, A., Wang, T.: A prediction model for separated flow transition. ASME J. Turbomach. 121, 594–602 (1999)

    Article  Google Scholar 

  15. Malkiel, E., Mayle, R.E.: Transition in a separation bubble. ASME J. Turbomach. 118, 752–759 (1996)

    Article  Google Scholar 

  16. Lou, W., Hourmouziadis, J.: Separation bubbles under steady and periodic-unsteady main flow conditions. ASME J. Turbomach. 122, 634–643 (2000)

    Article  Google Scholar 

  17. Yang, Z., Voke, P.R.: Large-Eddy simulation of bounday-layer separation and transition at a change of surface curvature. J. Fluid Mech. 439, 305–333 (2001)

    Article  MATH  Google Scholar 

  18. Henningson, D.S., Åkervik, E.: The use of global modes to understand transition and perform flow control. Phys. Fluids 20(3), 031302-1-15 (2008)

    Article  Google Scholar 

  19. Greenblatt, D., Paschal, K.B., Yao, C.-S., Harris, J.: Experimental investigation of separation control part 2: zero mass-flux oscillatory blowing. AIAA J. 44(12), 2831–2845 (2006)

    Article  Google Scholar 

  20. Avdis, A., Lardeau, S., Leschziner, M.: Large Eddy simulation of separated flow over a two-dimensional hump with and without control by means of a synthetic slot-jet. Flow Turbul. Combust. 83(3), 343–370 (2009)

    Article  MATH  Google Scholar 

  21. Vera, M., Zhang, X.F., Hodson, H., Harvey, N.: Separation and transition control on an aft-loaded ultra-high-lift LP turbine blade at low Reynolds numbers: high-speed validation. ASME J. Turbomach. 129(2), 340–348 (2007)

    Article  Google Scholar 

  22. Volino, R.J.: Passive flow control on low-pressure turbine airfoils. ASME J. Turbomach. 125, 754–764 (2003)

    Article  Google Scholar 

  23. Sieverding, C.H., Bagnera, C., Boege, A.C., Cordero Anton, J.A., Luére, V.: Investigation of the Effectiveness of Various Types of Boundary Layer Transition Elements of Low Reynolds Number Turbine Bladings. ASME Paper GT2004-54103 (2004)

  24. Bons, J.P., Sondergaard, R., Rivir, R.B.: The fluid dynamics of LPT blade separation control using pulsed jets. ASME J. Turbomach. 124, 77–85 (2002)

    Article  Google Scholar 

  25. Bloxham, M., Reimann, D., Crapo, K., Pluim, J., Bons, J.P.: Synchronizing separation flow control with unsteady wakes in a low-pressure turbine cascade. ASME J. Turbomach. 131, 021019-1-7 (2009)

    Article  Google Scholar 

  26. Hultgren, L.S., Ashpis, D.E.: Demonstration of Separation Delay with Glow-Discharge Plasma Actuators. AIAA Paper 2003-1025 (2003)

  27. Ramakumar, K., Jacob, J.D.: Low Pressure Turbine Blade Separation Control Using Plasma Actuators. AIAA Paper 2007-371 (2007)

  28. Gilarranz, J.L., Rediniotis, O.K.: Compact, High-Power Synthetic Jet Actuators for Flow Separation Control. AIAA paper, 2001-0737 (2001)

  29. Satta, F., Simoni, D., Ubaldi, M., Zunino, P., Bertini, F.: Synthetic jet design criteria and application for boundary layer separation control. WSEAS Transactions on Fluid Mechanics 5, 25–34 (2010)

    Google Scholar 

  30. Lengani, D., Simoni, D., Ubaldi, M., Zunino, P., Bertini, F.: An experimental study of the Reynold number influence on a laminar separation bubble. ERCOFTAC Bulletin 80, September, 24–29 (2009)

    Google Scholar 

  31. Cherubini, S., Robinet, J., De Palma, P.: The effects of non-normality and nonlinearity of the navier-stokes operator on the dynamics of a large laminar separation bubble. Phys. Fluids 20, 014102-1-15 (2010)

    Google Scholar 

  32. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press (1961)

  33. Pauley, L.L., Moin, P., Reynolds, W.C.: The structure of two-dimensional separation. J. Fluid Mech. 220, 397–411 (1990)

    Article  Google Scholar 

  34. Satta, F., Simoni, D., Ubaldi, M., Zunino, P., Bertini, F.: Experimental investigation of separation and transition processes on a high-lift low-pressure turbine profile under steady and unsteady inflow at low Reynolds number. J. Therm. Sci. 19, 26–33 (2010)

    Article  Google Scholar 

  35. Häggmark, C.P., Hildings, C., Henningson, D.S.: A numerical and experimental study of a transitional separation bubble. Aerosp. Sci. Technol. 5, 317–328 (2001)

    Article  MATH  Google Scholar 

  36. Burgmann, S., Schröder, W.: Investigation of the vortex induced unsteadyness of a separation bubble via time-resolved and scanning PIV measurements. Exp. Fluids 45, 675–691 (2008)

    Article  Google Scholar 

  37. Hain, R., Kahler, C., Radespiel, R.: Dynamic of laminar separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech. 630, 129–153 (2009)

    Article  MATH  Google Scholar 

  38. Hussain, A., Reynolds, W.: The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241–258 (1970)

    Article  Google Scholar 

  39. You, D., Moin, P.: Active control of flow separation over an airfoil using synthetic jets. IUTAM Symposium on Unsteady Separated Flows and Their Control, 551–561 (2009)

  40. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, New York (2001)

    Book  MATH  Google Scholar 

  41. Monkewitz, P.A., Huerre, P.: The influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25, 1137–1143 (1982)

    Article  Google Scholar 

  42. Watmuff, J.H.: Evolution of a wave packet into vortex loops in a laminar separation bubble. J. Fluid Mech. 397, 119–169 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Opoka, M., Hodson, H.: Transition on the T106 LP turbine blade in the presence of moving upstream wakes and downstream potential fields. ASME J. Turbomach. 130, 041017.1-12 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Simoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lengani, D., Simoni, D., Ubaldi, M. et al. Application of a Synthetic Jet to Control Boundary Layer Separation under Ultra-High-Lift Turbine Pressure Distribution. Flow Turbulence Combust 87, 597–616 (2011). https://doi.org/10.1007/s10494-011-9346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9346-z

Keywords

Navigation