Skip to main content
Log in

Effect of Droplet Size and Atomization on Spray Formation: A Priori Study Using Large-Eddy Simulation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The paper is mainly focused to the vast number of researchers who work within direct injection (DI) engine fuel spray simulations. The most common simulation framework today within the community is the Reynolds Averaged Navier Stokes (RANS) approach together with the Lagrangian Particle Tracking (LPT) method. In fact, this study is one of the first studies where high resolution LES/LPT diesel spray modeling is considered. The potential of LES to deepen the present day multidimensional LPT fuel spray simulations is discussed. Spray evolution is studied far from an injector by modeling a spray as a particle laden jet (PLJ). The effect of d on mixing in non-atomizing and atomizing sprays is thoroughly investigated at jet inlet Reynolds number Re = 104 and Mach number Ma = 0.3. Based on and justified by rather recent and also quite old ideas, novel and compact views on droplet breakup in turbulent flows are pointed out from the literature. We use LES/LPT to illustrate that even in a low Weber number flow (We < 13) the droplet breakup modeling may need considerable attention in contrast to what is typically assumed in the present-day breakup models. LES and LPT techniques are first applied to essentially confirm certain expected droplet size effects on spray shape in non-atomizing monodisperse sprays. In the simulations LES e.g. produces an expected turbulent dispersion pattern that depends on droplet diameter (d) without a droplet dispersion model in contrast to RANS. A new compact droplet breakup model is formulated and tested for droplets that break with a natural resonance time rate according to the Poisson process. As a result of the study: 1) the analysis gives a rigorous and enriching proof of currently existing views on droplet size effects on mixing, and 2) the presented a priori analysis points out the importance of modeling the resonance breakup even at a low We.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lefebre, A.H.: Atomization and Sprays. Hemisphere Publishing Corporation, New York (1989)

    Google Scholar 

  2. Heywood J.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York, ISBN-0-07-100499-8 (1989)

    Google Scholar 

  3. Faeth, G.M.: Spray combustion phenomena. In: Twenty-Sixth Symposium on Combustion/The Combustion Institute, pp. 1593–1612 (1996)

  4. Marmottant, P., Villermaux, E.: On spray formation. J. Fluid Mech. 498, 73–111 (2004)

    Article  MATH  Google Scholar 

  5. Cao, Z., Nishino, K., Mizuno, S., Torii, K.: PIV measurement of internal structure of diesel fuel spray. Exp. Fluids 29, S211–S229 (2000)

    Article  Google Scholar 

  6. Roisman, I.V., Araneo, K., Tropea, C.: Effect of ambient pressure on penetration of a diesel spray. Int. J. Multiph. Flow 33, 904–920 (2007)

    Article  Google Scholar 

  7. Dec, J.E.: A conceptual model of di diesel combustion based on laser-sheet imaging. SAE Tech. Pap. Ser. 1997-970873 (1996)

  8. Naber, J.D., Siebers, D.L.: Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Tech. Pap. Ser. 1996-960034 (1996)

  9. Siebers, S., Higgins, B.: Flame lift-off on direct-injection diesel sprays under quiescent conditions. SAE Tech. Pap. Ser. 2001-01-0530 (2001)

  10. Smallwood, G., Gülder, O.L.: Views on the structure of transient sprays. At. Sprays 10, 355–386 (2000)

    Google Scholar 

  11. Pickett, L.M., Siebers, D.L.: Orifice diameter effects on diesel fuel jet flame structure. J. Eng. Gas Turbine Power 127, 187–196 (2005)

    Article  Google Scholar 

  12. Hillamo, H., Kaario, O., Larmi, M.: PIV measurements of a diesel spray. SAE Paper 2008-08PFL-552 (2008)

  13. Aggarwal, S.K.: A review of spray ignition phenomena: present status and future research. Pror. Energy Combust. Sci. 24, 565–600 (1998)

    Article  Google Scholar 

  14. Edwards, C., Siebers, D., Hoskin, D.: A study on the autoignition process of a diesel spray via high speed visualization. SAE Tech. Pap. Ser. 920108 (1992)

  15. Stegemann, J., Seebode, J., Baltes, J., Baumgarten, J., Merker, G.P.: Influence of throttle effects at the needle seat on the spray systems. In: The Proceedings of 18th Annual Conference on Liquid Atomization and Spray Systems, ILASS Europe-2002 (2002)

  16. Pilch, M., Erdman, C.A.: Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow 13, 741 (1987)

    Article  Google Scholar 

  17. Kenning, V.M., Crowe, C.T.: On the effect of particles on carrier phase turbulence in gas-particle flows. Int. J. Multiph. Flow 23, 403 (1997)

    Article  Google Scholar 

  18. Sevik, M., Park, S.H.: The splitting of drops and bubbles by turbulent fluid flow. J. Fluids Eng. 95, 53–60 (1973)

    Article  Google Scholar 

  19. Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC, Boca Raton (1998)

    Google Scholar 

  20. Elghobashi, S.: Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 52, 309–329 (1994)

    Article  Google Scholar 

  21. Eaton, J., Fessler, J.: Preferential concentration of particles by turbulence. Int. J. Multiph. Flow 20, 169–209 (1994)

    Article  MATH  Google Scholar 

  22. Ménard, T., Demoulin, F.X., Berlemont, A.: 3D simulation of the primary break-up of a liquid jet by coupling level Set/VOF/Ghost fluid methods. In: The Proceedings of the 6th International Conference on Multiphase Flow, ICMF-2007. Leipzig, Germany (2007)

  23. Amsden, A.A., O’Rourke, P.J., Butler, T.D.: KIVA-II: a computer program for chemically reactive flows with sprays. Technical Report LA-11560-MS, Los Alamos National Laboratory (1989)

  24. Apte, S., Gorokhovski, M., Moin, P.: LES of atomizing spray with stochastic modeling of secondary breakup. Int. J. Multiph. Flow 29, 1503–1522 (2003)

    Article  MATH  Google Scholar 

  25. Hori, T., Senda, J., Kuge, T., Fujimoto, H: Large Eddy Simulation of non-evaporative and evaporative diesel spray in constant volume vessel by use of KIVALES. SAE paper 2006-01-3334 (2006)

  26. Lieuwen, T., Yang, V.: Combustion Instabilities in Gas Turbine Engines: Operational Experience. Fundamental Mechanisms and Modeling, vol. 210. Progress in Astronautics and Aeronautics. AIAA, Washington, DC, ISBN 1-56347-669-X (2005)

  27. Ling, W., Chung, J., Troutt, T., Crowe, C.: Direct numerical simulation of a three dimensional temporal mixing layer with particle dispersion. J. Fluid Mech. 358, 61–85 (1998)

    Article  MATH  Google Scholar 

  28. Yan, J., Luo, K., Fan, J., Tsuji, Y., Cen, K.: Direct numerical simulation of particle dispersion in a turbulent jet considering inter-particle collisions. Int. J. Multiph. Flow 34, 723–733 (2008)

    Article  Google Scholar 

  29. Salewski, M., Fuchs, L.: Consistency issues of Lagrangian particle tracking applied to a spray jet in crossflow. Int. J. Multiph. Flow 33, 394–410 (2007)

    Article  Google Scholar 

  30. Tanner, F.X.: Development and validation of a cascade atomization and drop breakup model for high-velocity dense sprays. At. Sprays 14, 1–27 (2004)

    Article  Google Scholar 

  31. Oefelein, J.C., Sankaran, V., Drozda, T.G.: Large Eddy Simulation of swirling particle-laden flows in a model axisymmetric combustor. In: Proceedings of the Combustion Institute, vol. 31, pp. 2291–2299 (2007)

  32. Luo, K., Klein, M., Fan, J.-R., Cen, K.: Effects on particle dispersion by turbulent transition in a jet. Phys. Lett., A 37, 345–350 (2006)

    Article  Google Scholar 

  33. Kärrholm, F.P.: Numerical modelling of diesel spray injection, turbulence interaction and combustion. Ph.D. thesis, Chalmers University of Technology, Göteborg (2008)

    Google Scholar 

  34. Kärrholm, F.O., Nordin, N.: Three-dimensional simulation of diesel spray ignition and flame lift-off using OpenFOAM and KIVA-3V CFD Codes. SAE Tech. Pap. Ser. 2008-01-0961 (2008)

  35. Apte, S., Mahesh, K., Moin, P.: Large-Eddy Simulation of evaporating spray in a coaxial-jet combustor. In: Proceedings of the Combustion Institute, vol. 32, pp. 2247–2256 (2009)

  36. Vuorinen, V., Larmi, M., Antila, E., Kaario, O., El-Hannouny, E., Gupta, S.: Near nozzle diesel spray modeling and x-ray measurements. SAE Technical Paper Series 2006-01-1390 (2006)

  37. Vuorinen, V., Larmi, M., Fuchs, L.: Large-Eddy Simulation of spray-originated turbulence production and dissipation. In: S4_Tue_A_14, Proceedings of the 6th International Conference on Multiphase Flow, ICMF-2007, Leipzig, Germany (2007)

  38. Vuorinen, V., Larmi, M., Fuchs, L.: Large-Eddy Simulation of particle size distribution effects on turbulence in sprays. In: AIAA-2008-0514, Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Grand Sierra Resort, Reno (2008)

  39. Vuorinen, V., Hillamo, H., Nuutinen, M., Kaario, O., Larmi, M., Fuchs, L.: Large Eddy Simulation of droplet stokes number effects on turbulent spray shape. At. Sprays 20, 93–114 (2010)

    Article  Google Scholar 

  40. Stiesch, G.: Modeling Engine Spray and Combustion Processes. Springer, New York, ISBN 3-540-00682-6 (2003)

    Google Scholar 

  41. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, ISBN 0-521-59886-9 (2001)

    Google Scholar 

  42. Ferziger, J., Perić, M.: Computational Methods for Fluid Dynamics. Springer, New York (1999)

    MATH  Google Scholar 

  43. Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. thesis, Imperial College, London (1996)

  44. Kolmogorov, A.N.: On the drop breakup in turbulent flows. In: Gidromekanika, DAN LXVI (NS), pp. 825–828 (1949)

  45. Brown, W.K., Wohletz, K.H.: Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions. J. Appl. Phys. 78, 2758–2763 (1995)

    Article  Google Scholar 

  46. Cao, J.: On the theoretical prediction of fuel droplet size distribution in nonreactive diesel sprays. J. Fluids Eng. 124, 182–185 (2002)

    Article  Google Scholar 

  47. Olsson, M., Fuchs, L.: Large Eddy Simulation of the proximal region of a spatially developing circular jet. Phys. Fluids 8, 2125–2137 (1996)

    Article  Google Scholar 

  48. Hällqvist, T.: Large Eddy Simulation of impinging jets with heat transfer. Ph.D. thesis, KTH, Stockholm (2006)

  49. Borman, G.K., Ragland, K.W.: Combustion Engineering. McGraw-Hill, New York, ISBN 0-07-006567-5 (1998)

    Google Scholar 

  50. Grinstein, F.F., Fureby, C., DeVore, C.R.: On MILES based on flux-limiting algorithms. Int. J. Numer. Methods Fluids 47, 1043–1051 (2005)

    Article  MATH  Google Scholar 

  51. Berglund, M.: Large-Eddy Simulation of complex turbulent flows. Ph.D. thesis, Lund, Sweden, ISBN-978-91-628-6879-6 (2006)

  52. Grinstein, F.F., Fureby, C.: Recent progress on flux-limiting based implicit Large Eddy Simulation. In: European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006 (2006)

  53. Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation. Cambridge University Press, Cambridge, ISBN 978-0-521-86982-9 (2007)

    Book  MATH  Google Scholar 

  54. http://www.opencfd.co.uk/ (2007)

  55. Rade, L., Westergren, B.: Mathematics handbook for science and engineering. Student Litteratur, ISBN 91-44-00839-2 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Anton Vuorinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuorinen, V.A., Hillamo, H., Kaario, O. et al. Effect of Droplet Size and Atomization on Spray Formation: A Priori Study Using Large-Eddy Simulation. Flow Turbulence Combust 86, 533–561 (2011). https://doi.org/10.1007/s10494-010-9266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9266-3

Keywords

Navigation