Skip to main content
Log in

White in Time Scalar Advection Model as a Tool for Solving Joint Composition PDF Equations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A rapidly decorrelating velocity field model is used to derive stochastic partial differential equations (SPDE) allowing one to compute the modeled one-point joint probability density function of turbulent reactive scalars. Those SPDEs are shown to be hyperbolic advection/reaction equations. They are dealt with in a generalized sense, so that discontinuities in the scalar fields can be treated. The Eulerian Monte Carlo (EMC) method thus defined is coupled with a RANS solver and applied to the computation of a turbulent premixed methane flame over a backward facing step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrillo, O., Ibañes, M., Garcia-Ojalvo, J., Casademunt, J., Sancho, J.M.: Intrinsinc noise-induced phase transitions: Beyond the noise interpretation. arxiv:cond-mat, Feb 2003

  2. Gardiner, C.W.: Handbook of Stochastic Methods, 2nd edn. Springer, Berlin Heidelberg New York (1985)

    Google Scholar 

  3. Gilbank, P., Zamuner, B.: Validation du modèle peul+ sur la configuration de marche descendante. Technical Report RT 38/4386/Y, ONERA/DEFA, 1999

  4. Kazantsev, A.P.: Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 26, 1031–1034 (1968)

    ADS  Google Scholar 

  5. Kraichnan, R.H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Magre, P., Collin, G.: Application de la drasc à l’opération A3C. Technical Report R.T.S. ONERA 7/3608 EY, ONERA/DEFA, 1994

  7. Pope, S.B.: Pdf methods for turbulent reactive flows. Pror. Energy Combust. Sci. 27, 119–192 (1985)

    Article  ADS  Google Scholar 

  8. Pope, S.B.: Turbulent Flows. Cambridge Univ. Press (2000)

  9. Sabel’nikov, V.A., Soulard, O.: Rapidly decorrelating velocity field model as a tool for solving Fokker–Planck pdf equations of turbulent reactive scalars. Phys. Rev., E 72, 016301 (2005)

    Article  ADS  Google Scholar 

  10. Soulard, O.: Approches PDF pour la combustion turbulente : Prise en compte d'un spectre d’échelles turbulentes dans la modélisation du micromélange et élaboration d’une méthode de Monte Carlo Eulérienne. PhD thesis, Univ. Rouen, Jan. 2005

  11. Valiño, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60, 157–172 (1998)

    Article  MATH  Google Scholar 

  12. Villermaux, J., Devillon, J.C.: Représentation de la redistribution des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique. In: 2nd International Symposium on Chemical Reaction Engineering. Amsterdam, vol. B-1-13, 1972

  13. Westbrook, C.K., Dryer, F.L.: Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Comb. Sci. 10, 1–57 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sabel’nikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabel’nikov, V., Soulard, O. White in Time Scalar Advection Model as a Tool for Solving Joint Composition PDF Equations. Flow Turbulence Combust 77, 333–357 (2006). https://doi.org/10.1007/s10494-006-9049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-006-9049-z

Key words

Navigation