Skip to main content

Advertisement

Log in

Is the spatial distribution of lentic water mite assemblages (Acari: Hydrachnidia) governed by prey availability?

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Predation is a biotic interaction that links water mites to different taxonomic groups of benthic invertebrates. Diptera larvae (Chironomidae) and microcrustaceans (Cladocera, Copepoda, Ostracoda) are known to be the most commonly preferred prey by water mites. Although these predatory interactions are known from observations and ex situ investigations, the distribution patterns and co-occurrence of water mites and their prey in littoral lentic habitats have been poorly studied. Our goal was to determine whether predation might serve as a significant factor in water mite assemblage composition and distribution. Samples were taken from littoral zones of 21 artificial lakes (reservoirs) in the Dinaric Western Balkan ecoregion of Croatia. At every site, 10 samples were collected with regard to shore slope in depth zones of up to 1 m. In total 490 samples were collected from April 2016 to July 2017. Data analysis showed that the spatial distribution of water mites was partially correlated with the environmental parameters we measured (explaining 45.1% of total water mite variation). A positive correlation between water mite abundance and diversity and depth gradient (favouring more stable conditions in deeper parts of the littoral zone) was also observed. Finally, water mite abundance and species richness variation were found to be best predicted by the abundance of potential prey groups. Predation was statistically determined to be a strong dispersion variable, most probably influencing both spatial distribution and composition of water mite assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Böttger K (1970) Die Ernährungsweise der Wassermilben (Hydrachnellae, Acari). Int Rev Gesamten Hydrobiol Hydrogr 55:895–912

    Article  Google Scholar 

  • Böttger K (1977) The general life cycle of fresh water mites (Hydrachnellae, Acari). Acarologia 18:496–502

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER V6: user manual/tutorial. Primer-E, Plymouth

    Google Scholar 

  • Davids C, Beintema EP, Mulder R, Weekenstroo JE (1981) Feeding rate and egg production in water mites in relationship with temperature. Verh Int Ver Theor Angew Limnol 21:1603–1606

    Google Scholar 

  • Davids C, Di Sabatino A, Gerecke R et al (2007) Acari: Hydrachnidia I. In: Bartsch I, Davids C, Deichsel R (eds) Chelicerata: Araneae, Acari I. Süßwasserfauna von Mitteleuropa 7/2-1. Spektrum Akademischer, Heidelberg, pp 241–333

    Google Scholar 

  • Di Sabatino A, Martin P, Gerecke R, Cicolani B (2002) Hydrachnidia (water mites). In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater Meiofauna: biology and ecology. Backhuys, Leiden, pp 105–133

    Google Scholar 

  • Di Sabatino A, Boggero A, Miccoli F, Cicolani B (2004) Diversity, distribution and ecology of water mites (Acari: Hydrachnidia and Halacaridae) in high Alpine lakes (Central Alps, Italy). Exp Appl Acarol 34(1–2):199–210

    Article  PubMed  Google Scholar 

  • Di Sabatino A, Gerecke R, Gledhill T, Smit H (2010) Chelicerata: Acari II. In: Gerecke R (ed) Süßwasserfauna von Mitteleuropa 7/2-2. Spektrum, Heidelberg, pp 1–216

    Google Scholar 

  • Gerecke R, Gledhill T, Pešić V, Smit H (2016) Chelicerata: Acari III. Süßwasserfauna von Mitteleuropa 7/2-3. Spektrum, Heidelberg, pp 1–417

    Book  Google Scholar 

  • Gliwicz ZM, Biesiadka E (1975) Pelagic water mites (Hydracarina) and their effect on plankton community in Neotropical man-made lake. Arch Hydrobiol 76:45–59

    Google Scholar 

  • Goldschmidt T (2016) Water mites (Acari, Hydrachnidia): powerful but widely neglected bioindicators: a review. Neotrop Biodivers 2:12–25

    Article  Google Scholar 

  • Horsák M, Bojková J, Zahrádková S, Omesová M, Helešic J (2009) Impact of reservoirs and channelization on lowland river. Limnologica 39:140–151

    Article  Google Scholar 

  • Illies J (1978) Limnofauna Europaea. Gustav Fischer, New York, pp 1–532

    Google Scholar 

  • Lattinger R (1988) Ekološka diferenciranost faune podzemnih voda Medvednice. Doctoral thesis (in Croatian), University of Zagreb, Zagreb, pp 1–448

  • Martin P (2005) Water mites (Hydrachnidia, Acari) as predators in lotic environments. In: Weigmann P, Alberti G, Wohltmann A, Ragusa S (eds), Acarine biodiversity in the natural and human sphere. Proceedings of the V symposium of the European Association of Acarologists. Phytophaga

  • Martin P, Davids C (2002) Life history of Hygrobates nigromaculatus, a widespread palaearctic water mite (Acati, Hydrachnidia, Hygrobatidae). In: Bernini F, Nannelli R, Nuzzaci G, de Lillo F (eds) Acarid phylogeny and evolution. Adaptations in mites and ticks. Kluwer Academic Publishers, New York, pp 101–110

    Chapter  Google Scholar 

  • Martin P, Gerecke R (2009) Diptera as hosts of water mite larvae—an interesting relationship with many open questions. Lauterbornia 68 (First International Conference on Diptera and their juvenile stages in aquatic and semiaquatic ecosystems in Europe held in Bad Bevensen/Germany 13/16-03-2009—Proceedings of the conference), pp. 95–103

  • Martin P, Koester M, Schynawa L, Gergs R (2015) First detection of prey DNA in Hygrobates fluviatilis (Hydrachnidia, Acari): a new approach for determining predator–prey relationships in water mites. Exp Appl Acarol 67(3):373–380

    Article  CAS  PubMed  Google Scholar 

  • Matoničkin I, Pavletić Z (1959) Životne zajednice na sedrenim slapovima rijeke Une i na brzacima pritoke Unca (Biocenosis on the travertine cataracts in the river Una and in the rapids of the affluent Unac). Musei Maced Sci Nat 2(56):78–99

    Google Scholar 

  • Palmieri A, Shah F, Dinar A (2001) Economics of reservoir sedimentation and sustainable management of dams. J Environ Manag 61:149–163

    Article  CAS  Google Scholar 

  • Paveljeva E, Zankai NP (1971) Quantitative nutritional characteristics of some water mite species. Tihany Biol Kutatointezet 38:177–181

    Google Scholar 

  • Pešić V (2002) New records of water mites (Acari, Actinedida) based on the material collected by T. Petkovski from Croatia, including a check-list of species recorded from Croatia. Nat Croatica 11(4):447–453

    Google Scholar 

  • Pešić V, Smit H, Gerecke R, Di Sabatino A (2010) The water mites (Acari: Hydrachnidia) of the Balkan peninsula, a revised survey with new records and descriptions of five new taxa. Zootaxa 2586:1–100

    Article  Google Scholar 

  • Pešić V, Bańkowska A, Goldschmidt T, Grabowski M, Michońki G, Zawal A (2018) Supplement to the checklist of water mites (Acari: Hydrachnidia) from the Balkan peninsula. Zootaxa 4394:151–184

    Article  PubMed  Google Scholar 

  • Poznańska M, Kobak J, Wolnomiejski N, Kakareko T (2009) Shallow-water benthic macroinvertebrate community of the limnic part of a lowland Polish dam reservoir. Limnologica 39:163–176

    Article  Google Scholar 

  • Pozojević I, Brigić A, Gottstein S (2018a) Water mite (Acari: Hydrachnidia) diversity and distribution in undisturbed Dinaric karst springs. Exp Appl Acarol 76:123–138

    Article  CAS  PubMed  Google Scholar 

  • Pozojević I, Ternjej I, Mihaljević Z, Gottstein S, Vučković N, Dorić V, Rumišek M (2018b) Prey abundance supporting unusual water mite (Acari: Hydrachnidia) community in a sublacustrine spring and tributary river. Acta Biol 25:69–75

    Article  Google Scholar 

  • Proctor H, Pritchard G (1989) Neglected predators: water mites (Acari: Parasitengona: Hydrachnellae) in freshwater communities. N Am Benthol Soc 8(1):100–111

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rose GA, Leggett WC (1990) The importance of scale to predator–prey spatial correlations: an example of Atlantic fishes. Ecology 71:33–43

    Article  Google Scholar 

  • Silver P, Palmer MA, Swan CM, Wooster D (2002) The small scale ecology of freshwater meiofauna. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys, Leiden, pp 217–239

    Google Scholar 

  • Smit H, Pešić V (2002) New records of the water mite families Arrenuridae, Nudomideopsidae and Athienemanniidae (Acari: Hydrachnidia) from FYR Macedonia and Serbia and Montenegro. Acta Entomol Serb 7:137–146

    Google Scholar 

  • Smith BP (1998) Loss of larval parasitism in parasitengonine mites. Exp Appl Acarol 22:187–200

    Article  Google Scholar 

  • Smith IM, Oliver DR (1986) Review of parasitic associations of larval water mites (Acari: Parasitengona: Hydrachnida) with insect hosts. Can Entomol 118:407–472

    Article  Google Scholar 

  • Smith IM, Cook DR, Smith BP (2001) Water mites (Hydrachnidia) and other arachnids (Chap. 16). In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates, 2nd edn. Academic Press, New York, pp 551–659

    Chapter  Google Scholar 

  • Stoch F, Gerecke R, Pieri V, Rossetti G, Sambugar B (2011) Exploring species distribution of spring meiofauna (Annelida, Acari, Crustacea) in the south-eastern Alps. J Limnol 70(Suppl):65–76

    Article  Google Scholar 

  • Ten Winkel EH, Davids C, de Nobel JG (1989) Food and feeding strategies of water mites of the genus Hygrobates and the impact of their predation on the larval population of the chironomid Cladotanytarsus mancus in Lake Maarsseveen. Neth J Zool 39:246–263

    Article  Google Scholar 

  • Ter Braak C, Šmilauer P (2012) CANOCO reference manual and user’s guide: software for ordination (version 5.0)

  • Tuzovskij PV (1990) Key to deutonymphs of water mites. Akademia Nauka UdSSR, Naukau

    Google Scholar 

  • Ullrich F (1976) Biologisch-ökologische Studien an rheophilen Wassermilben (Hydrachnellae, Acari), unter besonderer Berücksichtigung von Sperchon setiger (thor 1898). Dissertation, Universität zu Kiel, pp 1–241

  • Urbanič G, Petkovska V, Pavlin M (2012) The relationship between littoral benthic invertebrates and lakeshore modification pressure in two alpine lakes. Fundam Appl Limnol 180:157–173

    Article  Google Scholar 

  • Więcek M, Martin P, Gąbka M (2013) Distribution patterns and environmental correlates of water mites (Hydrachnidia, Acari) in peatland microhabitats. Exp Appl Acarol 61(2):147–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Zawal A, Dzierzgowska K, Szlauer-Lukaszewska A, Michonski G, Klosowska M, Bankowska A, Stryjecki R (2013) A thermocline as an obstacle to the spread of water mites (Acari:Hydrachnidia) across the lake profile. Aquat Insects 35:47–61

    Article  Google Scholar 

Download references

Acknowledgements

Croatian Waters are thanked for providing water physiochemical data. Mirjana Dimnjaković is gratefully acknowledged for the help provided in samplings and isolating water mites from invertebrate samples. The investigation of water mites from Dinaric reservoirs was part of the project: Development of a System for Classifying the Ecological Potential for artificial and heavily modified surface water bodies—Part 2. Reservoirs of Dinaric ecoregion (Contract class: 325-01/16-10/22 Docket No.: 374-1-2-16-8 Contract No.: 10-034/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Mihaljević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 5.

Table 5 Environmental properties of 42 sampling sites on 21 reservoirs where water mites were found

Appendix 2

See Table 6.

Table 6 Water mite fauna of 42 sampling sites on 21 reservoirs where water mites were found (Bajer 2, Lokve 2, Ponikve 1, Prološko Blato 1, Vlačine 1, Tribalj 1 and Tribalj 2 excluded)

Appendix 3

See Fig. 5.

Fig. 5
figure 5

Scatterplots of Pearson’s correlations between water mite taxa richness and abundance of a Chironomidae, b Cladocera, c Copepoda, and d Ostracoda

Appendix 4

See Fig. 6.

Fig. 6
figure 6

Scatterplots of Pearson’s correlations between water mite abundance and abundance of a Chironomidae, b Cladocera, c Copepoda, and d Ostracoda

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozojević, I., Juršić, L., Vučković, N. et al. Is the spatial distribution of lentic water mite assemblages (Acari: Hydrachnidia) governed by prey availability?. Exp Appl Acarol 77, 487–510 (2019). https://doi.org/10.1007/s10493-019-00362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00362-8

Keywords

Navigation