Skip to main content
Log in

Scent of a mite: origin and chemical characterization of the lemon-like flavor of mite-ripened cheeses

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Cheese infested with cheese mites is usually treated as unpalatable. Nevertheless, some traditional cheese manufactories in Germany and France intentionally use mites for fermentation of special varieties (i.e. Milbenkäse and Mimolette). While their production includes different mite species, both are characterized by a “lemon-like” flavor. However, the chemical nature and origin of this flavor-component is unknown. The cheese mites possess a pair of opisthosomal glands producing blends of hydrocarbons, terpenes and aromatics. Here, we describe the chemical profiles of the astigmatid mite species Tyrolichus casei (Milbenkäse) and Acarus siro (Mimolette). Although the chemical profiles differ in several aspects, both mite species produce neral (a volatile flavor component of lemon oil), which was absent from the headspace of both cheeses without mites. We conclude that the lemon-like flavor of mite cheese is not a consequence of fermentation of the cheese itself but a component from secretions of the cheese mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Alberti G (2004) Tribute to the past-notes on the history of Acarology in Germany. Phytophaga 14:13–56

    Google Scholar 

  • Asfaw N, Storesund HJ, Skattebøl L, Aasen AJ (1999) (1, S,5, R)-(−)-2,4,4-Trimethylbicyclo[3.1.1]hept-2-en-6-one, from the essential oil of the Ethiopian plant, Laggera tomentosa. Phytochemistry 52:1491–1494. doi:10.1016/S0031-9422(99)00373-8

    Article  CAS  Google Scholar 

  • Berard J, Bianchi F, Careri M, Chatel A, Mangia A, Musci M (2007) Characterization of the volatile fraction and of free fatty acids of “Fontina Valle d’Aosta”, a protected designation of origin Italian cheese. Food Chem 105(1):293–300. doi:10.1016/j.foodchem.2006.11.041

    Article  CAS  Google Scholar 

  • Bouwmeester HJ, Davies JAR, Smid HG, Welten RSA (1995) Physiological limitations to carvone yield in caraway (Carum carvi L.). Ind Crops Prod 4:39–51

    Article  CAS  Google Scholar 

  • Bouwmeester HJ, Gershenzon J, Konings MC, Croteau R (1998) Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development. Plant Physiol 117(3):901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brückner A, Stabentheiner E, Leis H-J, Raspotnig G (2015) Chemical basis of unwettability in Liacaridae (Acari, Oribatida): specific variations of a cuticular acid/ester-based system. Exp Appl Acarol 66(3):313–335. doi:10.1007/s10493-015-9914-3

    Article  PubMed  Google Scholar 

  • Collins YF, McSweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Diary J 13(11):841–866. doi:10.1016/S0958-6946(03)00109-2

    Article  CAS  Google Scholar 

  • Curtis RF, Hobson-Frohock A, Fenwick GR, Berreen JM (1981) Volatile compounds from the mite Acarus siro L. in food. J Stored Prod Res 17:197–203. doi:10.1016/0022-474X(81)90006-0

    Article  CAS  Google Scholar 

  • De Frutos M, Sanz J, Martinez-Castro I (1991) Characterization of artisanal cheeses by GC and GC/MS analysis of their medium volatility (SDE) fraction. J Agric Food Chem 39(3):524–530. doi:10.1021/jf00003a019

    Article  Google Scholar 

  • Didzbalis J, Ritter KA, Trail AC, Plog FJ (2004) Identification of fruity/fermented odorants in high-temperature-cured roasted peanuts. J Agric Food Chem 52:4828–4833. doi:10.1021/jf0355250

    Article  CAS  PubMed  Google Scholar 

  • Escudero A, Campo E, Farina L, Cacho J, Ferreira V (2007) Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J Agric Food Chem 55:4501–4510. doi:10.1021/jf0636418

    Article  CAS  PubMed  Google Scholar 

  • Hase A (1929) Zur pathologisch-parasitologischen und epidemiologisch-hygienischen Bedeutung der Milben, insbesondere der Tyroglyphinae (Käsemilben), sowie über den sogenannten „Milbenkäse“. Parasitol Res 1:765–821. doi:10.1007/BF02284603

    Google Scholar 

  • Heethoff M, Raspotnig G (2011) Is 7-hydroxyphthalide a natural compound of oil gland secretions?—Evidence from Archegozetes longisetosus (Acari, Oribatida). Acarologia 51:229–236. doi:10.1051/acarologia/20112004

    Article  Google Scholar 

  • Heethoff M, Bergmann P, Laumann M, Norton RA (2013) The 20th anniversary of a model mite: a review of current knowledge about Archegozetes longisetosus (Acari, Oribatida). Acarologia 53:353–368. doi:10.1051/acarologia/20132108

    Article  Google Scholar 

  • Hiraoka H, Mori N, Nishida R, Kuwahara Y (2001) 4e)-Dehydrocitrals [(2e,4e)- and (2z,4e)-3,7-dimethyl-2,4,6-octatrienals] from acarid mite Histiogaster sp a096 (Acari : Acaridae. Biosci Biotechnol Biochem 65:2749–2754. doi:10.1271/bbb.65.2749

    Article  CAS  PubMed  Google Scholar 

  • Hughes TE (1959) Mites or the Acari. University of London, Athlone Press, London

    Google Scholar 

  • Koller LM, Wirth S, Raspotnig G (2012) Geranial-rich oil gland secretions: a common phenomenon in the Histiostomatidae (Acari, Astigmata)? Int J Acarol 38:420–426. doi:10.1080/01647954.2012.662247

    Article  Google Scholar 

  • Krantz GW, Walter DE (2009) A manual of acarology. Texas Tech University Press, Lubbock

    Google Scholar 

  • Kubíčková J, Grosch W (1997) Evaluation of potent odorants of Camembert cheese by dilution and concentration techniques. Int Diary J 7(1):65–70. doi:10.1016/S0958-6946(96)00044-1

    Article  Google Scholar 

  • Küchenmeister F, Zürn FA (1881) Die Parasiten des Menschen. A. Abel, Leipzig

    Google Scholar 

  • Kumamoto J, Scora RW, Payne WW (1975) Ambrosial, a dehydrocitral isolated from the leaf oil of Ambrosia confertiflora DC. J Agric Food Chem 23:123–124

    Article  CAS  Google Scholar 

  • Kuwahara Y (2004) Chemical ecology of astigmatid mites. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 76–109

    Chapter  Google Scholar 

  • Leal WS, Kuwahara Y, Suzuki T, Kurosa K (1989) Pheromone study of acarid mites.XXI. Beta-acaridial, the sex-pheromone of the acarid mite Caloglyphus polyphyllae. Naturwissenschaften 76:332–333. doi:10.1007/Bf00368436

    Article  CAS  Google Scholar 

  • Meagher RL, Mitchell ER (1999) Nontarget hymenoptera collected in pheromone- and synthetic floral volatile-baited traps. Environ Entomol 28:367–371

    Article  Google Scholar 

  • Melnyk JP, Smith A, Scott-Dupree C, Marcone MF, Hill A (2010) Identification of cheese mite species inoculated on Mimolette and Milbenkäse cheese through cryogenic scanning electron microscopy. J Dairy Sci 93:3461–3468. doi:10.3168/jds.2009-2937

    Article  CAS  PubMed  Google Scholar 

  • Moio L, Piombino P, Addeo F (2000) Odour-impact compounds of Gorgonzola cheese. J Diary Res 67(2):273–285

    Article  CAS  Google Scholar 

  • Nogueira MCL, Lubachevsky G, Rankin SA (2005) A study of the volatile composition of Minas cheese. Food Sci Technol LEB 38(5):555–563. doi:10.1016/j.lwt.2004.07.019

    Article  Google Scholar 

  • Norton RA (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Exp Appl Acarol 22:559–594. doi:10.1023/A:1006135509248

    Article  Google Scholar 

  • Otienoburu PE, Ebrahimi B, Phelan PL, Foster WA (2012) Analysis and optimization of a synthetic milkweed floral attractant for mosquitoes. J Chem Ecol 38:873–881. doi:10.1007/s10886-012-0150-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Povolo M, Cabassi G, Profaizer M, Lanteri S (2011) Study on the use of evolved gas analysis FT-IR (EGA FT-IR) for the evaluation of cheese volatile fraction. Open Food Sci J 3:10–16. doi:10.2174/1874256401105010010

    Article  Google Scholar 

  • Prokopy RJ, Phelan PL, Wright SE, Minalga AJ, Barger R, Leskey TC (2001) Compounds from host fruit odor attractive to adult plum curculios (Coleoptera : Curculionidae). J Entomol Sci 36:122–134

    CAS  Google Scholar 

  • Qian M, Reineccius G (2003) Potent aroma compounds in parmigiano reggiano cheese studied using a dynamic headspace (purge-trap) method. Flavour Frag J 18:252–259. doi:10.1002/ffj.1194

    Article  CAS  Google Scholar 

  • Raspotnig G (2010) Oil gland secretion in Oribatida (Acari). In: Sabelis MW, Bruin J (eds) Trends in acarology. Springer, Dordrecht, pp 235–239

    Google Scholar 

  • Raspotnig G, Fauler G, Leis M, Leis HJ (2005) Chemical profiles of scent gland secretions in the cyphophthalmid opilionid harvestmen, Siro duricorius and S. exilis. J Chem Ecol 31:1353–1368. doi:10.1007/s10886-005-5291-4

  • Raspotnig G, Kaiser R, Stabentheiner E, Leis HJ (2008) Chrysomelidial in the opisthonotal glands of the oribatid mite, Oribotritia berlesei. J Chem Ecol 34:1081–1088. doi:10.1007/s10886-008-9508-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raspotnig G, Norton RA, Heethoff M (2011) Oribatid mites and skin alkaloids in poison frogs. Biol Lett 7:555–556. doi:10.1098/rsbl.2010.1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakata T, Norton RA (2001) Opisthonotal gland chemistry of early-derivative oribatid mites (Acari) and its relevance to systematic relationships of Astigmata. Int J Acarol 27:11

    Article  Google Scholar 

  • Sakata T, Norton RA (2003) Opisthonotal gland chemistry of a middle-derivative oribatid mite, Archegozetes longisetosus (Acari : Trhypochthoniidae). Int J Acarol 29:345–350

    Article  Google Scholar 

  • Sanchez-Borges M, Fernandez-Caldas E (2015) Hidden allergens and oral mite anaphylaxis: the pancake syndrome revisited. Curr Opin Allergy Clin Immunol 15:337–343. doi:10.1097/ACI.0000000000000175

    Article  CAS  PubMed  Google Scholar 

  • Schaefer I, Norton RA, Scheu S, Maraun M (2010) Arthropod colonization of land-linking molecules and fossils in oribatid mites (Acari, Oribatida). Mol Phylogenet Evol 57:113–121. doi:10.1016/j.ympev.2010.04.015

    Article  CAS  PubMed  Google Scholar 

  • Schieberle P, Grosch W (1998) Identification of potent flavor compounds formed in an aqueous lemon oil/citric acid emulsion. J Agric Food Chem 36:797–800

    Article  Google Scholar 

  • Shimizu N, Mori N, Kuwahara Y (2001) Aggregation pheromone activity of the female sex pheromone, beta-acaridial, in Caloglyphus polyphyllae (Acari: Acaridae). Biosci Biotechnol Biochem 65:1724–1728

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Mori N, Kuwahara Y (2003) Simple synthesis of mite pheromone beta-acaridial and its analogs in the secretion of Caloglyphus polyphyllae (Acari : Acaridae). Biosci Biotechnol Biochem 67:1732–1736

    Article  CAS  PubMed  Google Scholar 

  • Stein SE (2015) Mass Spectra by NIST Mass Spec Data Center. In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg, MD, 20899. http://webbook.Nist.Gov

  • Tagami K, Kuwahara Y (2005) Remarkable species of Histiostoma (Histiostomatidae, Astigmata) from japan with a pair of new identified ventral coxal organs and sexual dimorphism of chemical components. Acarologia 45:83–98

    Google Scholar 

  • Tuma D, Sinha RN, Muir WE, Abramson D (1990) Odor volatiles associated with mite-infested bin-stored wheat. J Chem Ecol 16:713–724

    Article  CAS  PubMed  Google Scholar 

  • Van den Dool H, Kratz PD (1963) A generalization of retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr 11:463–468. doi:10.1016/S0021-9673(01)80947-X

    Article  Google Scholar 

  • Whetstine MEC, Cadwallader KR, Drake MA (2005) Characterization of aroma compounds responsible for the rosy/floral flavor in cheddar cheese. J Agric Food Chem 53:3126–3132. doi:10.1021/jf048278o

    Article  Google Scholar 

  • Wood WF, Palmer TM, Stanton ML (2002) A comparison of volatiles in mandibular glands from three Crematogaster ant symbionts of the whistling thorn acacia. Biochem Syst Ecol 30:217–222. doi:10.1016/S0305-1978(01)00099-0

  • Wu S, Zorn H, Krings U, Berger RG (2005) Characteristic volatiles from young and aged fruiting bodies of wild Polyporus sulfureus (bull.:Fr.) fr. J Agric Food Chem 53:4524–4528

    Article  CAS  PubMed  Google Scholar 

  • Zehentbauer G, Reineccius GA (2002) Determination of key aroma components of Cheddar cheese using dynamic headspace dilution assay. Flavour Frag J 17(4):300–305. doi:10.1002/ffj.1102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank Sebastian Schmelzle for sharing his Milbenkäse with us. The first auhtor was supported by the German National Academic Foundation (Studienstiftung des deutschen Volkes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Heethoff.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

There are no legal restrictions on working with mites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brückner, A., Heethoff, M. Scent of a mite: origin and chemical characterization of the lemon-like flavor of mite-ripened cheeses. Exp Appl Acarol 69, 249–261 (2016). https://doi.org/10.1007/s10493-016-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-016-0040-7

Keywords

Navigation