Skip to main content

Advertisement

Log in

Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Bacteria associated with the tick Ixodes ricinus were assessed in specimens unattached or attached to the skin of cats, dogs and humans, collected in the Czech Republic. The bacteria were detected by PCR in 97 of 142 pooled samples including 204 ticks, i.e. 1–7 ticks per sample, collected at the same time from one host. A fragment of the bacterial 16S rRNA gene was amplified, cloned and sequenced from 32 randomly selected samples. The most frequent sequences were those related to Candidatus Midichloria midichlori (71 % of cloned sequences), followed by Diplorickettsia (13 %), Spiroplasma (3 %), Rickettsia (3 %), Pasteurella (3 %), Morganella (3 %), Pseudomonas (2 %), Bacillus (1 %), Methylobacterium (1 %) and Phyllobacterium (1 %). The phylogenetic analysis of Spiroplasma 16S rRNA gene sequences showed two groups related to Spiroplasma eriocheiris and Spiroplasma melliferum, respectively. Using group-specific primers, the following potentially pathogenic bacteria were detected: Borellia (in 20 % of the 142 samples), Rickettsia (12 %), Spiroplasma (5 %), Diplorickettsia (5 %) and Anaplasma (2 %). In total, 68 % of I. ricinus samples (97/142) contained detectable bacteria and 13 % contained two or more putative pathogenic groups. The prevalence of tick-borne bacteria was similar to the observations in other European countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexeev D, Kostrjukova E, Aliper A, Popenko A, Bazaleev N, Tyakht A, Selezneva O, Akopian T, Prichodko E, Kondratov I, Chukin M, Demina I, Galyamina M, Kamashev D, Vanyushkina A, Ladygina V, Levitskii S, Lazarev V, Govorun V (2012) Application of Spiroplasma melliferum proteogenomic profiling for the discovery of virulence factors and pathogenicity mechanisms in host-associated spiroplasmas. J Proteome Res 11:224–236

    Article  CAS  PubMed  Google Scholar 

  • Aureli S, Foley JE, Galuppi R, Rejmanek D, Bonoli C, Tampieri MP (2012) Anaplasma phagocytophilum in ticks from parks in the Emilia-Romagna region of northern Italy. Vet Ital 48:413–423

    PubMed  Google Scholar 

  • Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, Sogin ML (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167

    Article  CAS  PubMed  Google Scholar 

  • Bazzocchi C, Mariconti M, Sassera D, Rinaldi L, Martin E, Cringoli G, Urbanelli S, Genchi C, Bandi C, Epis S (2013) Molecular and serological evidence for the circulation of the tick symbiont Midichloria (Rickettsiales: Midichloriaceae) in different mammalian species. Parasit Vectors 6:350. doi:10.1186/1756-3305-6-350

    Article  PubMed Central  PubMed  Google Scholar 

  • Bi K, Huang H, Gu W, Wang J, Wang W (2008) Phylogenetic analysis of Spiroplasmas from three freshwater crustaceans (Eriocheir sinensis, Procambarus clarkia and Penaeus vannamei) in China. J Invertebr Pathol 99:57–65

    Article  CAS  PubMed  Google Scholar 

  • Capelli G, Ravagnan S, Montarsi F, Ciocchetta S, Cazzin S, Porcellato E, Babiker AM, Cassini R, Salviato A, Cattoli G, Otranto D (2012) Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy. Parasit Vectors 5:6. doi:10.1186/1756-3305-5-61

    Article  Google Scholar 

  • Carle P, Saillard C, Carrère N, Carrère S, Duret S, Eveillard S, Gaurivaud P, Gourgues G, Gouzy J, Salar P, Verdin E, Breton M, Blanchard A, Laigret F, Bové JM, Renaudin J, Foissac X (2010) Partial chromosome sequence of Spiroplasma citri reveals extensive viral invasion and important gene decay. Appl Environ Microbiol 76:3420–3426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Claerebout E, Losson B, Cochez C, Casaert S, Dalemans A-C, De Cat A, Madder M, Saegerman C, Heyman P, Lempereur L (2013) Ticks and associated pathogens collected from dogs and cats in Belgium. Parasit Vectors 6:183. doi:10.1186/1756-3305-6-183

    Article  PubMed Central  PubMed  Google Scholar 

  • Dally EL, Barros TS, Zhao Y, Lin S, Roe BA, Davis RE (2006) Physical and genetic map of the Spiroplasma kunkelii CR2-3x chromosome. Can J Microbiol 52:857–867

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egyed L, Makrai L (2014) Cultivable internal bacterial flora of ticks isolated in Hungary. Exp Appl Acarol 63:107–122

    Article  PubMed  Google Scholar 

  • Fenollar F, Raoult D (2004) Molecular genetic methods for the diagnosis of fastidious microorganisms. APMIS 112:785–807

    Article  CAS  PubMed  Google Scholar 

  • Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 67:1284–1291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasparich GE, Whitcomb RF, Dodge D, French FE, Glass J, Williamson DL (2004) The genus Spiroplasma and its non-helical descendants: phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. Int J Syst Evol Microbiol 54:893–918

    Article  CAS  PubMed  Google Scholar 

  • Glatz M, Mullegger RR, Maurer F, Fingerle V, Achermann Y, Wilske B, Bloemberg GV (2014) Detection of Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato genospecies and Anaplasma phagocytophilum in a tick population from Austria. Ticks Tick Borne Dis 5:139–144

    Article  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hai VV, Almeras L, Socolovschi C, Raoult D, Parola P, Pages F (2014) Monitoring human tick-borne disease risk and tick bite exposure in Europe: available tools and promising future methods. Ticks Tick Borne Dis 5:607–619

    Article  PubMed  Google Scholar 

  • Henning K, Greiner-Fischer S, Hotzel H, Ebsen M, Theegarten D (2006) Isolation of Spiroplasma sp. from an Ixodes tick. Int J Med Microbiol 296(Suppl 1):157–161

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt A, Kramer A, Sachse S, Straube E (2010) Detection of Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus ticks in a region of Middle Germany (Thuringia). Ticks Tick Borne Dis 1:52–56

    Article  PubMed  Google Scholar 

  • Hoy MA, Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control 32:427–441

    Article  Google Scholar 

  • Hurst GD, Graf von der Schulenburg JH, Majerus TM, Bertrand D, Zakharov IA, Baungaard J, Völkl W, Stouthamer R, Majerus ME (1999) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8:133–139

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsu T (2013) Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Appl Environ Microbiol 79:5013–5022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaffe JD, Stange-Thomann N, Smith C, DeCaprio D, Fisher S, Butler J, Calvo S, Elkins T, FitzGerald MG, Hafez N, Kodira CD, Major J, Wang S, Wilkinson J, Nicol R, Nusbaum C, Birren B, Berg HC, Church GM (2004) The complete genome and proteome of Mycoplasma mobile. Genome Res 14:1447–1461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiggins FM, Hurst GD, Jiggins CD, Schulenburg JH, Majerus ME (2000) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 120:439–446

    Article  PubMed  Google Scholar 

  • Johnson G, Ayers M, McClure SCC, Richardson SE, Tellier R (2003) Detection and identification of Bartonella species pathogenic for humans by PCR amplification targeting the riboflavin synthase gene (ribC). J Clin Microbiol 41:1069–1072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiewra D, Zalesny G, Czulowska A (2014) The prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus ticks in SW Poland. Pol J Microbiol 63:89–93

    PubMed  Google Scholar 

  • Kim E-J, Bauer C, Grevelding CG, Quack T (2013) Improved PCR/nested PCR approaches with increased sensitivity and specificity for the detection of pathogens in hard ticks. Ticks Tick Borne Dis 4:409–416

    Article  PubMed  Google Scholar 

  • Konai M, Whitcomb RF, Tully JG, Rose DL, Carle P, Bové JM, Henegar RB, Hackett KJ, Clark TB, Williamson DL (1995) Spiroplasma velocicrescens sp. nov., from the vespid wasp Monobia quadridens. Int J Syst Bacteriol 45:203–206

    Article  CAS  PubMed  Google Scholar 

  • Kopecky J, Nesvorna M, Hubert J (2014) Bartonella-like bacteria carried by domestic mite species. Exp Appl Acarol 64:21–32

    Article  CAS  PubMed  Google Scholar 

  • Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288

    Article  CAS  PubMed  Google Scholar 

  • Lazarev VN, Levitskii SA, Basovskii YI, Chukin MM, Akopian TA, Vereshchagin VV, Kostrjukova ES, Kovaleva GY, Kazanov MD, Malko DB, Vitreschak AG, Sernova NV, Gelfand MS, Demina IA, Serebryakova MV, Galyamina MA, Vtyurin NN, Rogov SI, Alexeev DG, Ladygina VG, Govorun VM (2011) Complete genome and proteome of Acholeplasma laidlawii. J Bacteriol 193(18):4943–4953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lichtensteiger CA, Steenbergen SM, Lee RM, Polson DD, Vimr ER (1996) Direct PCR analysis for toxigenic Pasteurella multocida. J Clin Microbiol 34:3035–3039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lo W-S, Chen L-L, Chung W-C, Gasparich GE, Kuo C-H (2013) Comparative genome analysis of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genom 14:22. doi:10.1186/1471-2164-14-22

    Article  CAS  Google Scholar 

  • Majerus TM, Graf von der Schulenburg JH, Majerus ME, Hurst GD (1999) Molecular identification of a male-killing agent in the ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Insect Mol Biol 8:551–555

    Article  CAS  PubMed  Google Scholar 

  • Mariconti M, Epis S, Gaibani P, Dalla Valle C, Sassera D, Tomao P, Fabbi M, Castelli F, Marone P, Sambri V, Bazzocchi C, Bandi C (2012) Humans parasitized by the hard tick Ixodes ricinus are seropositive to Midichloria mitochondrii: is Midichloria a novel pathogen, or just a marker of tick bite? Pathog Glob Health 106:391–396

    Article  PubMed Central  PubMed  Google Scholar 

  • May K, Strube C (2014) Prevalence of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in hard ticks (Ixodes ricinus) in the city of Hamburg, Germany. Parasitol Res 113:2169–2175

    Article  PubMed  Google Scholar 

  • Mediannikov O, Fenollar F (2014) Looking in ticks for human bacterial pathogens. Microb Pathog 77:142–148

    Article  CAS  PubMed  Google Scholar 

  • Mediannikov O, Sekeyova Z, Birg M-L, Raoult D (2010) A novel obligate intracellular gamma-proteobacterium associated with ixodid ticks, Diplorickettsia massiliensis, gen. nov., sp. nov. PLoS ONE 5:e11478. doi:10.1371/journal.pone.0011478

    Article  PubMed Central  PubMed  Google Scholar 

  • Meeus I, Vercruysse V, Smagghe G (2012) Molecular detection of Spiroplasma apis and Spiroplasma melliferum in bees. J Invertebr Pathol 109:172–174

    Article  CAS  PubMed  Google Scholar 

  • Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M, Chirico J, van der Wal FJ, Sprong H, Boye Pihl TP, Klitgaard K, Bodker R, Fach P, Moutailler S (2014) High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol 4:103. doi:10.3389/fcimb.2014.00103

    PubMed Central  PubMed  Google Scholar 

  • Movila A, Dubinina HV, Sitnicova N, Bespyatova L, Uspenskaia I, Efremova G, Toderas I, Alekseev AN (2014) Comparison of tick-borne microorganism communities in Ixodes spp. of the Ixodes ricinus species complex at distinct geographical regions. Exp Appl Acarol 63:65–76

    Article  PubMed  Google Scholar 

  • Norman AF, Regnery R, Jameson P, Greene C, Krause DC (1995) Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. J Clin Microbiol 33:1797–1803

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nunan LM, Lightner DV, Oduori MA, Gasparich GE (2005) Spiroplasma penaei sp. nov., associated with mortalities in Penaeus vannamei, Pacific white shrimp. Int J Syst Evol Microbiol 55:2317–2322

    Article  CAS  PubMed  Google Scholar 

  • Pangracova L, Derdakova M, Pekarik L, Hviscova I, Vichova B, Stanko M, Hlavata H, Petko B (2013) Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasit Vectors 6:238. doi:10.1186/1756-3305-6-238

    Article  PubMed Central  PubMed  Google Scholar 

  • Papazisi L, Gorton TS, Kutish G, Markham PF, Browning GF, Nguyen DK, Swartzell S, Madan A, Mahairas G, Geary SJ (2003) The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R(low). Microbiology 149:2307–2316

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu Y, Nakao R, Ohnuma A, Kawamori F, Sugimoto C (2014) Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS ONE 9:e103961. doi:10.1371/journal.pone.0103961

    Article  PubMed Central  PubMed  Google Scholar 

  • Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubalek Z, Foldvari G, Plantard O, Vayssier-Taussat M, Bonnet S, Spitalska E, Kazimirova M (2014) Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health 2:251. doi:10.3389/fpubh.2014.00251

    Article  PubMed Central  PubMed  Google Scholar 

  • Rudolf I, Mendel J, Sikutova S, Svec P, Masarikova J, Novakova D, Bunkova L, Sedlacek I, Hubalek Z (2009) 16S rRNA gene-based identification of cultured bacterial flora from host-seeking Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna ticks, vectors of vertebrate pathogens. Folia Microbiol (Praha) 54:419–428

    Article  CAS  Google Scholar 

  • Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T, Furuya K, Yoshino C, Horino A, Shiba T, Sasaki T, Hattori M (2002) The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res 30:5293–5300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sparagano OAE, Allsopp MTEP, Mank RA, Rijpkema SGT, Figueroa JV, Jongejan F (1999) Molecular detection of pathogen DNA in ticks (Acari: Ixodidae): a review. Exp Appl Acarol 23:929–960

    Article  CAS  PubMed  Google Scholar 

  • Stojek NM, Dutkiewicz J (2004) Studies on the occurrence of Gram-negative bacteria in ticks: Ixodes ricinus as a potential vector of Pasteurella. Ann Agric Environ Med 11:319–322

    PubMed  Google Scholar 

  • Subramanian G, Mediannikov O, Angelakis E, Socolovschi C, Kaplanski G, Martzolff L, Raoult D (2012a) Diplorickettsia massiliensis as a human pathogen. Eur J Clin Microbiol Infect Dis 31:365–369

    Article  CAS  PubMed  Google Scholar 

  • Subramanian G, Sekeyova Z, Raoult D, Mediannikov O (2012b) Multiple tick-associated bacteria in Ixodes ricinus from Slovakia. Ticks Tick Borne Dis 3:406–410

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Uspensky I (2014) Tick pests and vectors (Acari: Ixodoidea) in European towns: introduction, persistence and management. Ticks Tick Borne Dis 5:41–47

    Article  PubMed  Google Scholar 

  • Vayssier-Taussat M, Moutailler S, Michelet L, Devillers E, Bonnet S, Cheval J, Hebert C, Eloit M (2013) Next generation sequencing uncovers unexpected bacterial pathogens in ticks in western Europe. PLoS ONE 8:e81439. doi:10.1371/journal.pone.0081439

    Article  PubMed Central  PubMed  Google Scholar 

  • Venclikova K, Betasova L, Sikutova S, Jedlickova P, Hubalek Z, Rudolf I (2014a) Human pathogenic borreliae in Ixodes ricinus ticks in natural and urban ecosystem (Czech Republic). Acta Parasitol 59:717–720

    Article  PubMed  Google Scholar 

  • Venclikova K, Rudolf I, Mendel J, Betasova L, Hubalek Z (2014b) Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis 5:135–138

    Article  PubMed  Google Scholar 

  • Wang W, Gu W, Gasparich GE, Bi K, Ou J, Meng Q, Liang T, Feng Q, Zhang J, Zhang Y (2011) Spiroplasma eriocheiris sp. nov., associated with mortality in the Chinese mitten crab, Eriocheir sinensis. Int J Syst Evol Microbiol 61:703–708

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, Van Etten J, Maniloff J, Woese CR (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467

    PubMed Central  CAS  PubMed  Google Scholar 

  • Westberg J, Persson A, Holmberg A, Goesmann A, Lundeberg J, Johansson KE, Pettersson B, Uhlén M (2004) The genome sequence of Mycoplasma mycoides subsp. mycoides SC type strain PG1T, the causative agent of contagious bovine pleuropneumonia (CBPP). Genome Res 14:221–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zając V, Wójcik-Fatla A, Dutkiewicz J, Szymańska J (2015) Bartonella henselae in eastern Poland: the relationship between tick infection rates and the serological response of individuals occupationally exposed to tick bites. J Vector Ecol 40:75–82

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by project RO0415 of the Ministry of Agriculture of the Czech Republic. The authors thank to Martin Markovic for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hubert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klubal, R., Kopecky, J., Nesvorna, M. et al. Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia. Exp Appl Acarol 68, 127–137 (2016). https://doi.org/10.1007/s10493-015-9988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-9988-y

Keywords

Navigation