Skip to main content
Log in

Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips in greenhouse ornamental crops

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The influence of seasonal greenhouse climate on the efficacy of predatory mites for thrips control was determined for potted chrysanthemum. Trials in controlled environment chambers, small-scale greenhouses and commercial greenhouses were conducted to determine which biological control agent—that is, Amblyseius swirskii Athias-Henriot or Neoseiulus cucumeris (Oudemans)—is more efficacious for control of western flower thrips, Frankliniella occidentalis (Pergande), in different seasons. Under simulated summer conditions, no differences were observed in the predation and oviposition rates of both predatory mites in the laboratory trials. However, small-scale greenhouse trials showed that A. swirskii performed better than N. cucumeris in summer (i.e., more efficacious thrips control, higher predator abundance and less overall damage to the crop). Under simulated winter conditions, laboratory trials demonstrated variable differences in predation rates of the two predatory mites. The small-scale greenhouse trials in winter showed no differences in thrips control and predatory mite abundance between the two predatory mites, but plants with A. swirskii had less damage overall. The results from the small-scale trials were validated and confirmed in commercial greenhouse trials. Overall, A. swirskii performed better in the summer and equally good or better (less damage overall) under winter conditions, whereas N. cucumeris is a more cost effective biological control agent for winter months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arthurs S, McKenzie CL, Chen J, Dogramaci M, Brennan M, Houben K, Osborne L (2009) Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol Control 49:91–96

    Article  Google Scholar 

  • Belcher DW, Thurston R (1982) Inhibition of movement of larvae of the convergent lady beetle by leaf trichomes of tobacco. Environ Entomol 11:91–94

    Article  Google Scholar 

  • Blumthal MR, Cloyd RA, Spomer LA, Warnock DF (2005) Flower color preferences of western flower thrips. HortTechnology 15:846–853

    Google Scholar 

  • Broadbent AB, Allen WR (1995) Interactions within the western flower thrips/tomato spotted wilt virus/host plant complex on virus epidemiology. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum, New York, pp 185–196

    Chapter  Google Scholar 

  • Brødsgaard HF (2004) Biological control of thrips on ornamental crops. In: Heinz KM, Van Driesche RG, Parrella MP (eds) Biocontrol in protected culture. Ball Publishings, Batavia, pp 253–264

    Google Scholar 

  • Buitenhuis R, Shipp J, Jandricic S, Murphy G, Short M (2007) Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse ornamentals. Pest Manag Sci 63:910–917

    Article  CAS  PubMed  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010a) Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Bull Entomol Res 100:167–173

    Article  CAS  PubMed  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010b) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52:110–114

    Article  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C, Brommit A, Lee W (2014) Host plant effects on the behaviour and performance of Amblyseius swirskii (Acari: Phytoseiidae). Exp Appl Acarol 62:171–180

    Article  PubMed  Google Scholar 

  • Cloutier C, Arodokoun D, Johnson SG, Gelinas L (1995) Thermal dependence of Amblyseius cucumeris (Acarina: Phytoseiidae) and Orius insidiosus (Heteroptera: Anthocoridae) in greenhouses. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 231–235

    Chapter  Google Scholar 

  • Daughtrey ML, Jones RK, Moyer JW, Daub ME, Baker JR (1997) Tospoviruses strike the greenhouse industry: INSV has become a major pathogen on flower crops. Plant Dis 81:1220–1230

    Article  Google Scholar 

  • de Almeida AA, Janssen A (2013) Juvenile prey induce anti-predator behaviour in adult predators. Exp Appl Acarol 59:275–282

    Article  PubMed Central  PubMed  Google Scholar 

  • De Courcy Williams M, Kravar-Garde L, Fenlon J, Sunderland KD (2004) Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 32:1–13

    Article  PubMed  Google Scholar 

  • de Klerk ML, Ramakers PMJ (1986) Monitoring population densities of the phytoseiid predator Amblyseius cucumeris and its prey after large scale introductions to control Thrips tabaci on sweet pepper. Meded Fac Landbouwwet Rijksuniv Gent 51(3a):1045–1048

    Google Scholar 

  • de Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:494

    Google Scholar 

  • Ferrero M, Gigot C, Tixier MS, van Houten YM, Kreiter S (2010) Egg hatching response to a range of air humidities for six species of predatory mites. Entomol Exp Appl 135:237–244

    Article  Google Scholar 

  • Gerson U, Weintraub PG (2007) Review: mites for the control of pests in protected cultivation. Pest Manag Sci 63:658–676

    Article  CAS  PubMed  Google Scholar 

  • Gerson U, Weintraub PG (2011) Mites (acari) as a factor in greenhouse management. Annu Rev Entomol 57:229–247

    Article  PubMed  Google Scholar 

  • Hajek A (2004) Natural enemies: an introduction to biological control. Cambridge University Press, New York

    Book  Google Scholar 

  • Heinz KM, Van Driesche RG, Parrella MP (2004) Biocontrol in protected culture. Ball Publishing, Batavia

    Google Scholar 

  • Helyer NL, Brobyn PJ (1992) Chemical control of western flower thrips (Frankliniella occidentalis Pergande). Ann Appl Biol 121:219–231

    Article  CAS  Google Scholar 

  • Janssen A, Willemse E, van der Hammen T (2003) Poor host plant quality causes omnivore to consume predator eggs. J Anim Ecol 72:478–483

    Article  Google Scholar 

  • Jensen S (2000) Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integr Pest Manag Rev 5:131–146

    Article  Google Scholar 

  • Jones T, Shipp JL, Scott-Dupree CD, Harris CR (2005) Influence of greenhouse microclimate on Neoseiulus (Amblyseius) cucumeris (Acari: Phytoseiidae) predation on Frankliniella occidentalis (Thysanoptera: Thripidae) and oviposition on greenhouse cucumber. J Entomol Soc Ont 136:71–83

    Google Scholar 

  • Karnkowski W, Trdan S (2002) Diagnostic protocols for regulated pests—Frankliniella occidentalis. OEPP/EPPO Bull 32:281–292

    Article  Google Scholar 

  • Katayama H (1997) Effect of temperature on development and oviposition of western flower thrips Frankliniella occidentalis (Pergande). Jpn J Appl Entomol Zool 41:225–231

    Article  Google Scholar 

  • Lee H-S, Gillespie DR (2010) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53:17–27

    Article  PubMed  Google Scholar 

  • Lewis T (1997) Thrips as crop pests. CAB International, New York

    Google Scholar 

  • MacGill EI (1939) A gamasid mite (Typhlodromus thripsi n.sp.), a predator of Thrips tabaci Lind. Ann Appl Biol 26:309–317

    Article  Google Scholar 

  • Messelink GJ, van Steenpaal SEF, Ramakers PM (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biocontrol 51:753–768

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Steenpaal SEF (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379

    Article  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291

    Article  CAS  PubMed  Google Scholar 

  • Nothnagl M, Kosiba A, Alsanius BW, Anderson P, Larsen RU (2008) Modelling population dynamics of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on greenhouse grown chrysanthemum. Eur J Hortic Sci 73:12–19

    Google Scholar 

  • Perdikis DC, Lykouressis DP, Economou LP (2004) Influence of light–dark phase, host plant, temperature, and their interactions on the predation rate in an insect predator. Environ Entomol 33:1137–1144

    Article  Google Scholar 

  • Porath A, Swirski E (1965) A survey of phytoseiid mites (Acarina: Phytoseiidae) on citrus, with a description of one new species. Isr J Agric Res 15:87–100

    Google Scholar 

  • Rugman-Jones PF, Hoddle MS, Stouthamer R (2010) Nuclear-mitochondrial barcoding exposes the global pest western flower thrips (Thysanoptera: Thridiae) as two sympatric cryptic species in its native California. J Econ Entomol 103:877–886

    Article  PubMed  Google Scholar 

  • Sabelis MW (1981) Biological control of two-spotted spider mites using phytoseiid predators. Part I. Ph.D. Thesis: Agricultural University, Wageningen, The Netherlands

  • Sadof CS, Sclar DC (2002) Public tolerance to defoliation and flower distortion in a public horticulture garden. J Econ Entomol 95:348–353

    Article  PubMed  Google Scholar 

  • Shipp JL, van Houten YM (1997) Influence of temperature and vapor pressure deficit on survival of the predatory mite Amblyseius cucumeris (Acari: Phytoseiidae). Environ Entomol 26:106–113

    Article  Google Scholar 

  • Shipp JL, Ward KI, Gillespie TJ (1996) Influence of temperature and vapor pressure deficit on the rate of predation by the predatory mite, Amblyseius cucumeris, on Frankliniella occidentalis. Entomol Exp Appl 78:31–38

    Article  Google Scholar 

  • Shipp L, Johansen N, Vanninen I, Jacobson R (2009) Greenhouse climate: an important consideration when developing pest management programs for greenhouse crops. Acta Hortic 893:133–143

    Google Scholar 

  • Skirvin DJ, Kravar-garde L, Reynolds K, Jones J, Mead A, Fenlon J (2007) Supplemental food affects thrips predation and movement of Orius laevigatus (Hemiptera: Anthocoridae) and Neoseiulus cucumeris (Acari: Phytoseiidae). Bull Entomol Res 97:309–315

    Article  CAS  PubMed  Google Scholar 

  • Trudgill DL, Honek A, Li D, van Straalen NM (2005) Thermal time-concepts and utility. Ann Appl Biol 146:1–14

    Article  Google Scholar 

  • van Houten YM, van Stratum P, Bruin J, Veerman A (1995a) Selection for non-diapause in Amblyseius cucumeris and Amblyseius barkeri and exploration of the effectiveness of selected strains for thrips control. Entomol Exp Appl 77:289–295

    Article  Google Scholar 

  • van Houten YM, van Rijn PCJ, Tanigoshi LK, van Stratum P, Bruin J (1995b) Preselection of predatory mites to improve year-round biological control of western flower thrips in greenhouse crops. Entomol Exp Appl 74:225–234

    Article  Google Scholar 

  • Whittaker MS, Kirk WDJ (2004) The effect of photoperiod on walking, feeding and oviposition in the western flower thrips. Entomol Exp Appl 111:209–214

    Article  Google Scholar 

  • Zhang Z-Q (2003) Mites of greenhouses: identification, biology and control. CABI International Publishing, Wallingford

    Google Scholar 

  • Zhang Y, Jewett TJ, Shipp JL (2002) Adynamic model to estimate in-canopy and leaf surface microclimate of greenhouse cucumber crops. Trans Am Soc Agric Eng 45:179–192

    Article  Google Scholar 

  • Zilahi-Balogh GMG, Shipp JL, Cloutier C, Brodeur J (2007) Predation by Neoseiulus cucumeris on western flower thrips, and its oviposition on greenhouse cucumber under winter vs. summer conditions in a temperate climate. Biol Control 40:160–167

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the technical assistance provided by staff at Agriculture and Agri-Food Canada, School of Environmental Sciences - University of Guelph, Vineland Research and Innovation Centre, Boekestyn Greenhouses and Meyers Farms for use of their greenhouses and the three anonymous reviewers for their helpful comments and suggestions on the manuscript. Funding for this project was provided by the Agriculture and Agri-Food Canada Growing Forward ‘Canadian Ornamental Horticulture Research and Innovation Cluster’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Les Shipp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewitt, L.C., Shipp, L., Buitenhuis, R. et al. Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips in greenhouse ornamental crops. Exp Appl Acarol 65, 435–450 (2015). https://doi.org/10.1007/s10493-014-9861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9861-4

Keywords

Navigation