Skip to main content
Log in

Molecular detection of Rickettsia, Coxiella and Rickettsiella DNA in three native Australian tick species

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Three Australian native animal species yielded 60 samples composed of three indigenous ticks. Hosts included twelve koalas, two echidnas and one wombat from Victoria, and ticks were of the species Ixodes tasmani (n = 42), Bothriocroton concolor (n = 8) and B. auruginans (n = 10), respectively. PCR screening and sequencing detected a species of Coxiella, sharing closest sequence identity to C. burnetii (>98%), in all B. auruginans, as well as a species of Rickettsia, matching closest to R. massiliae, in 70% of the same samples. A genotype sharing closest similarity to Rickettsia bellii (>99%) was identified in three female B. concolor collected from one of the echidnas. Three samples of I. tasmani, taken from three koalas, yielded different genotypes of Rickettsiella. These results represent the first detection of the three genera in each tick species and identify a high level of previously undetected bacterial diversity in Australian ticks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo SA (1998) The specificity of behavioral fever in the cricket Acheta domesticus. J Parasitol 84:529–533. doi:10.2307/3284717

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi MV, Casati S, Peter O et al (2002) Rhipicephalus ticks infected with Rickettsia and Coxiella in southern Switzerland (Canton Ticino). Infect Genet Evol 2:111–120. doi:10.1016/S1567-1348(02)00092-8

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Ogata H, Robert C et al (2007) Reductive genome evolution from the mother of Rickettsia. PLoS Genet 3:e14. doi:10.1371/journal.pgen.0030014

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Paces-Fessy M, Raimond M et al (2007) Molecular characterization and evolution of arthropod-pathogenic Rickettsiella bacteria. Appl Environ Microbiol 73:5045–5047. doi:10.1128/AEM.00378-07

    Article  PubMed  CAS  Google Scholar 

  • Cutler SJ, Bouzid M, Cutler R (2006) Q fever. J Infect 54:313–318. doi:10.1016/j.jinf.2006.10.048

    Article  PubMed  Google Scholar 

  • Eremeeva ME, Bosserman EA, Demma LJ et al (2006) Isolation and identification of Rickettsia massiliae from Rhipicephalus sanguineus ticks collected in Arizona. Appl Environ Microbiol 72:5569–5577. doi:10.1128/AEM.00122-06

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP–Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Frutos R, Federici BA, Revet B et al (1994) Taxonomic studies of Rickettsiella, Rickettsia and Chlamydia using genomic DNA. J Invertebr Pathol 63:294–300. doi:10.1006/jipa.1994.1054

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JJ, Beier MS, Rahman MS et al (2007) Plasmids and Rickettsial evolution: insight from Rickettsia felis. PLoS One 2:e266. doi:10.1371/journal.pone.0000266

    Article  PubMed  CAS  Google Scholar 

  • Greub G, Lepidi H, Rovery C et al (2005) Diagnosis of infectious endocarditis in patients undergoing valve surgery. Am J Med 118:230–238. doi:10.1016/j.amjmed.2004.12.014

    Article  PubMed  Google Scholar 

  • Hoover TA, Vodkin MH, Williams JC (1992) A Coxiella burnetii repeated DNA element resembling bacterial insertion sequence. J Bacteriol 174:5540–5548

    PubMed  CAS  Google Scholar 

  • Jasinskas A, Zhong J, Barbour AG (2007) Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 73:334–336. doi:10.1128/AEM.02009-06

    Article  PubMed  CAS  Google Scholar 

  • Kazar J (2005) Coxiella burnetii infection. Ann N Y Acad Sci 1063:105–114. doi:10.1196/annals.1355.018

    Article  PubMed  Google Scholar 

  • Kim C, Yi Y, Yu D et al (2006) Tick-borne rickettsial pathogens in ticks and small mammals in Korea. Appl Environ Microbiol 72:5766–5776. doi:10.1128/AEM.00431-06

    Article  PubMed  CAS  Google Scholar 

  • Klompen H, Dobson SJ, Barker SC (2002) A new subfamily, Bothriocrotoninae n. subfam., for the genus Bothriocroton Keirans, King and Sharrad, 1994 status amend. (Ixodida: Ixodidae), and the synonymy of Aponomma Neumann, 1899 with Amblyomma Koch 1844. Syst Parasitol 53:101–107. doi:10.1023/A:1020466007722

    Article  PubMed  Google Scholar 

  • Kurtti TJ, Palmer AT, Oliver JHJ (2002) Rickettsiella-like bacteria in Ixodes woodi (Acari: Ixodidae). J Med Entomol 39:534–540

    PubMed  Google Scholar 

  • Labruna MB, Whitworth T, Bouyer DH et al (2004) Rickettsia bellii and Rickettsia amblyommii in Amblyomma ticks from the state of Rodonia, Western Amazon, Brazil. J Med Entomol 41:1073–1081

    PubMed  Google Scholar 

  • Mediannikov OY, Ivanov L, Nishikawa M et al (2003) Molecular evidence of Coxiella-like microorganism by Haemaphysalis cocinnae ticks in the Russian Far East. Ann N Y Acad Sci 990:226–228

    Article  PubMed  CAS  Google Scholar 

  • Murdoch FA, Spratt DM (2005) Ecology of the marsupial tick (Ixodes tasmani Neumann) (Acarina: Ixodidae), in eastern Australia. Aust J Zool 53:383–388. doi:10.1071/ZO05032

    Article  Google Scholar 

  • Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63:3926–3932

    PubMed  CAS  Google Scholar 

  • Ogata H, La Scola B, Audic S et al (2006) Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet 2:e76. doi:10.1371/journal.pgen.0020076

    Article  PubMed  CAS  Google Scholar 

  • Parola P, Cornet JP, Sanogo YO et al (2003) Detection of Ehrlichia spp., Anaplasma spp., Rickettsia spp., and other eubacteria in ticks from the Thai-Myanmar border and Vietnam. J Clin Microbiol 41:1600–1608. doi:10.1128/JCM.41.4.1600-1608.2003

    Article  PubMed  CAS  Google Scholar 

  • Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc R Soc Biol 273:2097–2106. doi:10.1098/rspb.2006.3541

    Article  Google Scholar 

  • Perotti MA, Clarke HK, Turner BD et al (2006) Rickettsia as obligate and mycetomic bacteria. FASEB J 20:1646–1656. doi:10.1096/fj.06-5870fje

    Article  Google Scholar 

  • Psaroulaki A, Ragiadakou D, Kouris G et al (2006) Ticks, tick-borne Rickettsiae, and Coxiella burnetii in the Greek Island of Cephalonia. Ann N Y Acad Sci 1078:389–399. doi:10.1196/annals.1374.077

    Article  PubMed  CAS  Google Scholar 

  • Reeves WK, Loftis AD, Priestley RA et al (2005) Molecular and biological characterization of a novel Coxiella-like agent from Carios capensis. Ann N Y Acad Sci 1063:343–345. doi:10.1196/annals.1355.055

    Article  PubMed  Google Scholar 

  • Regnery RL, Spruill CL, Plikaytis BD (1991) Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173:1576–1589

    PubMed  CAS  Google Scholar 

  • Roberts FHS (1970) Australian ticks. CSIRO, Melbourne

    Google Scholar 

  • Roux V, Raoult D (2000) Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int J Syst Evol Microbiol 50:1449–1455

    PubMed  CAS  Google Scholar 

  • Roux V, Bergoin M, Lamaze N et al (1997a) Reassessment of the taxonomic position of Rickettsiella grylli. Int J Syst Bacteriol 47:1255–1257

    Article  PubMed  CAS  Google Scholar 

  • Roux V, Rydkina E, Eremeeva M et al (1997b) Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the Rickettsiae. Int J Syst Bacteriol 47:252–261

    PubMed  CAS  Google Scholar 

  • Seshadri R, Samuel JE (2005) Genome analysis of Coxiella burnetii species: insights into pathogenesis and evolution of implications for biodefense. Ann N Y Acad Sci 1063:442–450. doi:10.1196/annals.1355.063

    Article  PubMed  Google Scholar 

  • Seshadri R, Paulsen IT, Eisen JA et al (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci USA 100:5455–5460. doi:10.1073/pnas.0931379100

    Article  PubMed  CAS  Google Scholar 

  • Sjöstedt A, Goransson I, Macellaro A et al (1998) Genotypic and phenotypic characterization of two Swedish isolates and two prototypic strains of Coxiella burnetii. FEMS Immunol Med Microbiol 20:165–172

    Article  PubMed  Google Scholar 

  • Spencer AJ, Canfield P (1993) Haematological characterisation of heavy tick infestation in koalas (Phascolarctos cinereus). Comp Haematol Int 3:225–229. doi:10.1007/BF02341970

    Article  Google Scholar 

  • Stein A, Saunders NA, Taylor AG et al (1993) Phylogenetic homogeneity of Coxiella burnetii strains as determined by 16S ribosomal RNA sequencing. FEMS Microbiol Lett 113:339–344. doi:10.1111/j.1574-6968.1993.tb06537.x

    Article  PubMed  CAS  Google Scholar 

  • Tan CK, Owens L (2000) Infectivity, transmission and 16S rRNA sequencing of a rickettsia, Coxiella cheraxi sp. nov., from the freshwater crayfish Cherax quadricarinatus. Dis Aq Org 41:115–122. doi:10.3354/dao041115

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

  • Unsworth N, Stenos J, Fas AG et al (2007a) Three Rickettsioses, Darney Island, Australia. Emerg Infect Dis 13:1105–1107

    Article  PubMed  Google Scholar 

  • Unsworth N, Stenos J, Graves SR et al (2007b) Flinders Island spotted fever Rickettsiosis caused by “marmionii” strain of Rickettsia honei, Eastern Australia. Emerg Infect Dis 13:566–573

    Article  PubMed  CAS  Google Scholar 

  • Vilcins I-M, Old J, Deane E (2005) The impact of ticks and tick-borne diseases on native animal species in Australia. Microbiol Aust 26(2):76–79

    Google Scholar 

  • Vitale G, Mansueto S, Rolain JM et al (2006) Rickettsia massiliae human isolation. Emerg Infect Dis 12:174–175

    PubMed  Google Scholar 

  • Weisburg WG, Dobson ME, Samuel JE et al (1989) Phylogenetic diversity of the Rickettsiae. J Bacteriol 171:4202–4206

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ashley Reed and staff from the Koala Conservation Centre at Philip Island, Victoria, for the collection of ticks during routine health inspections of the wild koala population. We would also like to thank Peter Holz from Healseville sanctuary, Victoria, for the collection of ticks from captive and wild animals. We would like to thank Annick Bernard for her technical assistance and advice. This research was supported by a Macquarie University Postgraduate scholarship to Vilcins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inger-Marie E. Vilcins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilcins, IM.E., Old, J.M. & Deane, E. Molecular detection of Rickettsia, Coxiella and Rickettsiella DNA in three native Australian tick species. Exp Appl Acarol 49, 229–242 (2009). https://doi.org/10.1007/s10493-009-9260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-009-9260-4

Keywords

Navigation