Skip to main content

Advertisement

Log in

A tale of three acaropathogenic fungi in Israel: Hirsutella, Meira and Acaromyces

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

We review published and unpublished studies conducted in Israel with six acaropathogenic fungi, assayed in order to control the citrus rust mite, Phyllocoptruta oleivora (Ashmead) (CRM). Hirsutella thompsonii Fisher was introduced twice, killed 80–90% of the exposed mites, but due to its requirements for near-saturation humidities was deemed unsuitable for local outdoors conditions. Hirsutella kirchneri (Rostrup) Minter et al. and Hirsutella necatrix Minter et al. were also introduced and assayed against CRM and spider mites, but their efficacy was unsatisfactory. Three indigenous fungi found to be associated with mites, Meira geulakonigii, Meira argovae and Acaromyces ingoldii—all three recently described by Boekhout, Gerson, Scorzetti & Sztejnberg—were assayed against several mites. Meira geulakonigii killed 80–90% of several spider mites and of the CRM, and caused some mortality of Iphiseius degenerans (Berlese), one out of three phytoseiid predators assayed. Mortality was not due to parasitization; extracts from the media in which the fungi had developed caused considerable mite death, suggesting that it was a result of fungal toxins. Data from a field study indicated that spraying blastoconidia of M. geulakonigii on grapefruits infested by CRM significantly reduced pest-incurred damage from 23 to 13%. Applying qRT-PCR methodology indicated that M. geulakonigii was endophytic within sealed grapefruit flowers and in the flavedo of the fruits’ peel. Neither in the laboratory nor in the field was any evidence ever obtained that this fungus damaged the plants, leading us to hypothesize that M. geulakonigii serves as a “body guard” of grapefruits (and perhaps other plants as well). All three fungi suffered very little mortality after being exposed to various insecticides and acaricides that are in current local use (with the exception of sulfur). The ability of M. geulakonigii to reduce mite numbers without affecting the host plant, the minimal fungal effect on some predatory mites, its endophytic nature along with the apparent tolerance of M. geulakonigii to many insecticides and acaricides, suggest that this fungus could be suitable for integrated pest management (IPM) program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Akello J, Dubois T, Gold CS et al (2007) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp). J Invertebr Pathol 96:34–42

    Article  PubMed  Google Scholar 

  • Avis TJ, Caron SJ, Boekhout T et al (2001) Molecular and physiological analysis of the powdery mildew antagonist Pseudozyma flocculosa and related fungi. Phytopathology 91:249–254

    Article  PubMed  CAS  Google Scholar 

  • Aghajanzadeh S, Prasad DT, Malik B (2007) Genetic diversity in Hirsutella thompsonii isolates based on random amplified polymorphic DNA analysis. Biocontrol 52:375–383

    Article  CAS  Google Scholar 

  • Bao J, Chen HK, Gonchen W (1990) Studies on Hirsutella necatrix Minter et al. and H. satumaensis newly occurring in Zhejiang Province. Acta Agric Univer Zhejiangensis 16:10–13

    Google Scholar 

  • Boekhout T, Theelen B, Houbraken J et al (2003) Novel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov. Int J Syst Evol Microbiol 53:1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Boucias DG, McCoy CW, Joslyn DJ (1982) Isozyme differentiation among 17 geographical isolates of Hirsutella thompsonii. J Invertebr Pathol 39:329–337

    Article  CAS  Google Scholar 

  • Cabrera RI, Dominguez D (1987) Hirsutella nodulosa e Hirsutella kirchneri, dos nuevos hongos patogenos del acaro del moho, Phyllocoptruta oleivora. Cien Tecno Agricol Protec Plant 10:139–142

    Google Scholar 

  • Chandler D, Davidson G, Pell JK et al (2000) Fungal biocontrol of acari. Biocontrol Sci Technol 10:357–384

    Article  Google Scholar 

  • Chernin L, Gafni A, Mozes-Koch R et al (1997) Chitinolytic activity of the acaropathogenic fungi Hirsutella thompsonii and Hirsutella necatrix. Can J Microbiol 43:440–446

    Article  CAS  Google Scholar 

  • Dara SK (2007) Laboratory evaluation of fungus Hirsutella thompsonii (Deuteromycotina: Hyphomycetes) for the control of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae). Bionotes 9:18–19

    Google Scholar 

  • Diaz MP, Macias AF, Navarro SR, De la Torres M (2006) Mechanism of action of entomopathogenic fungi. Interciencia 31:856–860

    Google Scholar 

  • Doron-Shloush S (1995) The biology of the fungus Hirsutella kirchneri and its influence on the citrus rust mite. MSc Thesis, Faculty of Agriculture, Hebrew University of Jerusalem, Jerusalem, Israel

  • Elliot SL, Sabelis MW, Janssen A, van der Geest LPS, Beerling EAM, Fransen J (2000) Can plants use entomopathogens as bodyguards? Ecol Lett 3:228–235

    Article  Google Scholar 

  • Fisher FE (1950) Two new species of Hirsutella Patouillard. Mycologia 42:190–297

    Article  Google Scholar 

  • Gafni A (1997) The biology of the acaropathogenic fungus Hirsutella necatrix. MSc Thesis, Faculty of Agriculture, Hebrew University of Jerusalem, Jerusalem, Israel

  • Gerson U, Kenneth R, Muttath TI (1979) Hirsutella thompsonii, a fungal pathogen of mites II. Host–pathogen interactions. Ann Appl Biol 91:29–40

    Article  Google Scholar 

  • Gerson U, Paz Z, Kushnir L, Sztejnberg A (2005) New fungi to control phytophagous mites and phytopathogenic fungi. IOBC/WPRS Bull 28(1):103–106

    Google Scholar 

  • Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell Science, Oxford, UK

    Google Scholar 

  • Hountondji FCC, Hanna R, Cherry AJ et al (2007) Scaling up tests on virulence of the cassava green mite fungal pathogen Neozygites tanajoae (Entomophthorales: Neozygitaceae) under controlled conditions: first observations at the population level. Exp Appl Acarol 41:153–168

    Article  PubMed  Google Scholar 

  • Kanga LHB, James RR, Boucias DG (2002) Hirsutella thompsonii and Metarhizium anisopliae as potential microbial control agents of Varroa destructor, a honey bee parasit. J Invertebr Pathol 81:175–184

    Article  PubMed  CAS  Google Scholar 

  • Kenneth R, Muttath TI, Gerson U (1979) Hirsutella thompsonii, a fungal pathogen of mites I. Biology of the fungus in vitro. Ann Appl Biol 91:21–28

    Article  Google Scholar 

  • Kumar PS, Anuroop CP (2004) A method to test the pathogenicity of fungi to Aceria guerreronsis with particular reference to Hirsutella thompsonii. Syst Appl Acarol 9:11–14

    Google Scholar 

  • Lewis GC, Heard AJ, Brady BL, Minter DW (1981) Fungal parasitism of the eriophyid mite vector of ryegrass mosaic virus. In: Proc 1981 British Crop Prot Conf, pp 109–111

  • Lewis LC, Bruck DJ, Gunnarson RD, Bidne KG (2001) Assessment of plant pathogenicity of endophytic Beauveria bassiana in Bt transgenic and non-transgenic corn. Crop Sci 41:1395–1400

    Google Scholar 

  • Miętkiewski R, Bałazy S, Tkaczuk C (2000) Mycopathogens of mites in Poland—a review. Biocontrol Sci Technol 10:459–465

    Article  Google Scholar 

  • Minter DW, Brady BL, Hall RA (1983) Five Hyphomycetes isolated from eriophyid mites. Trans Br Mycol Soc 81:455–471

    Article  Google Scholar 

  • Mozes-Koch R, Edelbaum O, Livneh O et al (1995) Identification of Hirsutella species, isolates within a species and intraspecific heterokaryons by random amplified polymorphic DNA. Z Pflanzenkrankh Pflanzenschutz 102:284–290

    CAS  Google Scholar 

  • Odongo B, Odindo MO, Brownbridge M, Kumar R (1998) Comparative biological efficacy of Hirsutella thompsonii and Neoseiulus teke for cassava mite (Mononychellus tanajoa) suppression. Biocontrol Sci Tech 8:345–355

    Article  Google Scholar 

  • Palevsky E, Argov Y, Ben-David T, Gerson U (2003) Identification and evaluation of potential predators of the citrus rust mite, Phyllocoptruta oleivora, in Israel. Syst Appl Acarol 8:39–48

    Google Scholar 

  • Paz Z (2007) Biological control of phytophagous mites by the fungi Meira geulakonigii, Meira argovae and Acaromyces ingoldii: host range and mechanism. PhD Thesis, Hebrew University of Jerusalem, Jerusalem, Israel

  • Paz Z, Gerson U, Sztejnberg A (2007a) Assaying three new fungi against citrus mites in the laboratory, and a field trial. Biocontrol 52:855–862

    Article  Google Scholar 

  • Paz Z, Burdman S, Gerson U, Sztejnberg A (2007b) Antagonistic effects of the endophytic fungus Meira geulakonigii on the citrus rust mite Phyllocoptruta oleivora. J Appl Microbiol 103:2570–2579

    Article  PubMed  CAS  Google Scholar 

  • Rombach MC, Roberts DW, Shepard BM (1986) Hirsutella thompsonii Fisher infecting phytophgous mites in the Philippines. Philipp Entomol 6:620–622

    Google Scholar 

  • Rombach MC, Gillespie AT (1988) Entomogenous Hyphomycetes for insect and mite control on greenhouse crops. Biocontrol News Inf 9:7–18

    Google Scholar 

  • Roy HE, Pell JK (2000) Interaction between entomopathogenic fungi and other natural enemies: Implication for biological control. Biocontrol Sci Technol 10:737–752

    Article  Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, NY, pp 3–29

    Google Scholar 

  • Sztejnberg A, Doron-Shloush S, Gerson U (1997) The biology of the acaropathogenic fungus Hirsutella kirchneri. Biocontrol Sci Technol 7:577–590

    Article  Google Scholar 

  • Sztejnberg A, Paz Z, Boekhout T et al (2004) A new fungus with dual biocontrol capabilities: reducing the numbers of phytophagous mites and powdery mildew disease damage. Crop Prot 23:1125–1129

    Article  Google Scholar 

  • Torgeson DC (1967) Determination and measurement of fungitoxicity. In: Torgeson DC (ed) Fungicides an advanced treatise, vol 1. Academic Press, New York, pp 93–123

    Google Scholar 

  • van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24:497–560

    Article  PubMed  Google Scholar 

  • Wekesa VW, Knapp M, Maniania NK, Boga HI (2006) Effects of Beauveria bassiana and Metarhizium anisopliae on mortality, fecundity and egg fertility of Tetranychus evansi. J Appl Entomol 130:155–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Gerson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerson, U., Gafni, A., Paz, Z. et al. A tale of three acaropathogenic fungi in Israel: Hirsutella, Meira and Acaromyces . Exp Appl Acarol 46, 183–194 (2008). https://doi.org/10.1007/s10493-008-9202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-008-9202-6

Keywords

Navigation