Skip to main content

Advertisement

Log in

Molecular detection of Ehrlichia ruminantium infection in Amblyomma variegatum ticks in The Gambia

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

In West Africa, losses due to heartwater disease are not known because the incidence/prevalence has not been well studied or documented. To develop a diagnostic tool for molecular epidemiology, three PCR-based diagnostic assays, a nested pCS20 PCR, a nested map1 PCR and a nested reverse line blot (RLB) hybridization assay, were evaluated to determine their ability to detect infection in vector ticks, by applying them simultaneously to A. variegatum field ticks to detect Ehrlichia ruminantium, the causative agent of heartwater. The nested pCS20 PCR assay which amplified the pCS20 gene fragment showed the highest detection performance with a detection rate of 16.6%; the nested map1 PCR, which amplified the gene encoding the major antigenic protein1 (map1 gene) showed a detection rate of 11% and the RLB, based on the 16S rDNA sequence of anaplasma and ehrlichial species, detected 6.2%. The RLB, in addition, demonstrated molecular evidence of Ehrlichia ovina, Anaplasma marginale and Anaplasma ovis infections in The Gambia. Subsequently, the pCS20 assay was applied to study the prevalence and distribution of E. ruminantium tick infection rates at different sites in five divisions of The Gambia. The rates of infection in the country ranged from 1.6% to 15.1% with higher prevalences detected at sites in the westerly divisions (Western, Lower River and North Bank; range 8.3–15.1%) than in the easterly divisions (Central River and Upper River; range 1.6–7.5%). This study demonstrated a gradient in the distribution of heartwater disease risk for susceptible livestock in The Gambia which factor must be considered in the overall design of future upgrading programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allsopp MT, Dorfling CM, Milliard JC, Bensaid A, Haydon DT, Van Heerden H, Allsopp BA (2001) Ehrlichia ruminantium major antigenic protein gene (map1) variants are not geographically constrained and show no evidence of having evolved under positive selection pressure. J Clin Microbiol 39:4200–4203

    Article  PubMed  CAS  Google Scholar 

  • Allsopp METP, Hattingh CM, Vogel SW, Allsopp BA (1999) Evaluation of 16S, map 1 and pCS20 probes for the detection of Cowdria and Ehrlichia species. Epidemiol Infect 122:323–328

    Article  PubMed  CAS  Google Scholar 

  • Allsopp MTEP, Van Strijp MF, Farber E, Josemans AI, Allsopp BA (2007) Ehrlichia ruminantium variants which do not cause heartwater found in South Africa. Vet Microbiol 120:158–166

    Article  PubMed  CAS  Google Scholar 

  • Andrew HR, Norval RAI (1989) The career status of sheep, cattle and African buffalo recovered from heartwater. Vet Parasitol 34:261–266

    Article  PubMed  CAS  Google Scholar 

  • Asselbergs M, Jongejan F, Langa A, Neves L, Afonso S (1993) Antibodies to Cowdria ruminantium in Mozambican goats and cattle detected by immunoflourescence using endothelial cell culture antigen. Trop Anim Health Prod 25:144–150

    Article  PubMed  CAS  Google Scholar 

  • Awa DN (1997) Serological survey of heartwater relative to the distribution of the vector Amblyomma variegatum and other tick species in north Cameroon. Vet Parasitol 68:165–173

    Article  PubMed  CAS  Google Scholar 

  • Barré N, Camus E, Birnie E, Burridge MJ, Uilengerg G, Provost A (1984) Setting up a method for surveying the distribution of cowdriosis (heartwater) in the Caribbean. In: Proc. XIIIth World Congr. Dis. Cattle, vol 1. Durban, South Africa, pp 536–541

  • Bell-Sakyi L, Koney EBM, Dogbey O, Walker AR (2004) Ehrlichia ruminantium seroprevalence in domestic ruminants in Ghana. I. Longitudinal survey in the Greater Accra Region. Vet Microbiol 100:175–188

    Article  PubMed  CAS  Google Scholar 

  • Bekker CPJ, Vink D, Lopes Pereira CM, Wapenaar W, Langa A, Jongejan F (2001) Heartwater (Cowdria ruminantium infection) as a cause of postrestocking mortality of goats in Mozambique. Clin Diagn Lab Immunol 8:843–846

    Article  PubMed  CAS  Google Scholar 

  • Bekker CPJ, De Vos S, Taoufik A, Sparagano OAE, Jongejan F (2002) Simultaneous detection of Anaplasma and Ehrlichia species in ruminants and detection of Ehrlichia ruminantium in Amblyomma variegatum ticks by reverse line blot hybridization. Vet Microbiol 89:223–238

    Article  PubMed  CAS  Google Scholar 

  • Birnie EF, Burridge MJ, Camus E, Barre N (1985) Heartwater in the Caribbean: isolation of Cowdria ruminantium from Antigua. Vet Rec 116:121–123

    PubMed  CAS  Google Scholar 

  • Camus E, Barre N (1987) Epidemiology of heartwater in Guadeloupe and in the Caribbean. Onderstepoort J Vet Res 54:419–426

    PubMed  CAS  Google Scholar 

  • Camus E, Barre N (1992) The role of Amblyomma variegatum in transmission of heartwater with special reference to Guadeloupe. Ann NY Acad Sci 653:33–41

    Article  PubMed  CAS  Google Scholar 

  • Collins NE, Liebenberg J, De Villiers EP, Brayton KA, Louw E, Pretorious A, Farber EF, Van Heerden H, Josemans A, Van Kleef M, Steyn MC, Van Strijp MF, Zweygarth E, Jongejan F, Maillard JC, Berthier D, Botha M, Joubert F, Corton CH, Thomson NR, Allsopp MT, Allsopp BA (2005) The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. PNAS 102:838–843

    Article  PubMed  CAS  Google Scholar 

  • Du Plessis JL (1985) A method for determining the Cowdria ruminantium infection rate of A. hebraeum: effects in mice injected with tick homogenates. Onnderstepoort J Vet Res 52:55–61

    CAS  Google Scholar 

  • Du Plessis JL, Bezuidenhout JD, Brett MS (1993) The sero-diagnosis of heartwater: a comparison of five tests. Rev Elev Méd vét Pays trop 46:123–29

    PubMed  CAS  Google Scholar 

  • Faburay B, Munstermann S, Geysen D, Bell-Sakyi L, Ceesay A, Bodaan C, Jongejan F (2005) Point seroprevalence survey of Ehrlichia ruminantium infection in small ruminants in The Gambia. Clin Diagn Lab Immunol 12:508–512

    Article  PubMed  CAS  Google Scholar 

  • Griffais R, Andre PM, Thibon M (1991) K-tuple frequency in the human genome and polymerase chain reaction. Nucleic Acids Res 19:3887–3891

    Article  PubMed  CAS  Google Scholar 

  • Gubbels JM, De Vos AP, Van Der Weide M, Viseras J, Schouls LM, De Vries E, Jongejan F (1999) Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridisation. J Clin Microbiol 37:1782–1789

    PubMed  CAS  Google Scholar 

  • Gueye A, Mbengue M, Diouf A (1993) Epidemiology of Cowdria infection in Senegal. I. Study of the transmission and infection level in Amblyomma variegatum (Fabricius, 1794) in the Niayes region. Rev Elev Méd vét Pays trop 46:441–447

    PubMed  CAS  Google Scholar 

  • Gueye A, Mbengue Mb, Dieye Th, Diouf A, Seye M, Seye MH (1993) La cowdriose au Sénégal: quelques aspects epidemiologiques. Rev Elev Méd vét Pays trop 46:217–221

    PubMed  CAS  Google Scholar 

  • Gueye A, Martinez D, Mbengue Mb, Dieye Th, Diouf A (1993) Epidemiologie de la cowdriose au Sénégal. II. Resultats de suivis sero-epidemiologiques. Rev Elev Méd vét Pays trop 46:449–454

    PubMed  CAS  Google Scholar 

  • Jongejan F, Thielemans MJC (1989) Identification of an immunodominant antigenically conserved 32-kilodalton protein from Cowdria ruminantium. Infect Immun 57:3243–3246

    PubMed  CAS  Google Scholar 

  • Jordan JO, Baker JAF (1981) Survival rate on the host and mating capacity of Amblyomma hebraeum (Koch) male ticks. In: Whitehead GB, Gibson JD (eds) Tick biology and control. Tick Research Unit, Rhodes University, Grahamstown, South Africa, pp 115–117

    Google Scholar 

  • Kock ND, Van Vliet AHM, Charlton K, Jongejan F (1995). Detection of Cowdria ruminantium in blood and bone marrow samples from clinically normal, free-ranging Zimbabwean wild ungulates. J Clin Microbiol 33:2501–2504

    PubMed  CAS  Google Scholar 

  • Koney EBM, Dogbey O, Walker AR, Bell-Sakyi L (2004) Ehrlichia ruminantium seroprevalence in domestic ruminants in Ghana. II. Point prevalence survey. Vet Microbiol 103:183–193

    Article  PubMed  CAS  Google Scholar 

  • Mahan SM, Waghela SD, McGuire TC, Rurangirwa FR, Wassink LA, Barbet AF (1992) A cloned DNA probe for Cowdria ruminantium hybridsed with eight heartwater strains and detects infected sheep. J Clin Microbiol 30:981–986

    PubMed  CAS  Google Scholar 

  • Mahan SM, Peter TF, Simbi BH, Burridge MJ (1998) PCR detection of Cowdria ruminantium infection in ticks and animals from heartwater-endemic regions of Zimbabwe. An NY Acad Sci 849:85–87

    Article  CAS  Google Scholar 

  • Martinez D, Swinkels J, Camus E, Jongejan F (1990) Comparison de trois antigens pour le diagnostic de la cowdriose par immunofluorescence indirecte. Rev Elev Méd vét Pays trop 43:159–166

    PubMed  CAS  Google Scholar 

  • Martinez D, Coisne S, Sheikboudou C, Jongejan F (1993) Detection of antibodies to Cowdria ruminantium in the serum of domestic ruminants by indirect ELISA. Rev Elev Méd vét Pays trop 46:115–120

    PubMed  CAS  Google Scholar 

  • Nijhof AM, Penzhorn BL, Lynen G, Mollel JO, Morkel P, Bekker CPJ, Jongejan F (2003) Babesia bicornis sp. nov. and Theileria bicornis sp. nov.: tick-borne parasites associated with mortality in the black rhinoceros. J Clin Microbiol 41:2249–2254

    Article  PubMed  Google Scholar 

  • Norval RAI, Andrew HR, Yunker CE (1990) Infection rates with Cowdria ruminantium of nymphs and adults of the bont tick collected in the field in Zimbabwe. Vet Parasitol 36:277–282

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan CJ, Medley GF, Peter TF, Perry BD (1998) Investigating the epidemiology of heartwater (Cowdria ruminantium infection) by means of a transmission dynamics model. Parasitology 117:49–61

    Article  PubMed  Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Molecular evolution: a ribosomal RNA approach. Ann Rev Microbiol 40:337–365

    Article  CAS  Google Scholar 

  • Oura CAL, Bishop RP, Wampande EM, Lubega GW, Tait A (2003) Application of a reverse line blot assay to the study of haemoparasites in cattle in Uganda. Int J Parasitol 34:603–613

    Article  Google Scholar 

  • Peter TF, Deem SL, Barbet AF, Norval RAI, Simbi BH, Kelly PJ, Mahan SM (1995) Development and evaluation of PCR assay for detection of low levels of Cowdria ruminantium infection in Amblyomma ticks not detected by DNA probe. J Clin Microbiol 33:166–172

    PubMed  CAS  Google Scholar 

  • Peter TF, Bryson NR, Perry BD, O’Callaghan CJ, Medley GF, Smith GE, Mlambo G, Horak IG, Burridge MJ, Mahan SM (1999) Cowdria ruminantium infection in ticks in Kruger National Park. Vet Rec 15:304–307

    Google Scholar 

  • Peter TF, Barbet AF, Alleman AR, Simbi BH, Burridge MJ, Mahan SM (2000) Detection of the agent of heartwater, Cowdria ruminantium, in Amblyomma ticks by PCR: validation and application of the assay to field ticks. J Clin Microbiol 38:1539–1544

    PubMed  CAS  Google Scholar 

  • Postigo M, Taoufik A, Bell-Sakyi L, De Vries E, Morrison WI, Jongejan F (2007) Differential expression of the major antigenic protein 1 multigene family of Ehrlichia ruminantium in ticks and in vitro cultures. Vet Microbiol, doi: 10.1016/j.vetmic.2007.01.019

  • Reddy GR, Sulsona CR, Harrison RH, Mahan SM, Burridge MJ, Barbet AF (1996) Sequence heterogeneity of the major antigenic protein 1 genes from Cowdria ruminantium isolates from different geographical areas. Clin Diagn Lab Immunol 154:73–79

    Google Scholar 

  • Schnittger L, Yin H Qi B, Gubbels MJ, Beyer D, Niemann S, Jongejan F, Ahmed JS (2003) Simultaneous detection and differentiation of Theileria and Babesia parasites infecting small ruminants by reverse line blotting. Parasitol Res 92:189–196

    Article  PubMed  Google Scholar 

  • Scott GR (1990) Ovine ehrlichiosis. In Sewell MMH, Brocklesby, DW (ed) Animal diseases in the tropics, 7th edn. Bailliere Tindall, pp 248–250

  • Simbi BH, Peter TF, Burridge MJ, Mahan SM (2003) Comparing the detection of exposure to Ehrlichia ruminantium infection on a heartwater-endemic farm by the pCS20 polymerase chain reaction and an indirect MAP1-B enzyme linked immunosorbent assay. Onderstepoort J Vet Res 70:231–235

    PubMed  CAS  Google Scholar 

  • Van Heerden H, Steyn HC, Allsopp MTEP, Zweygarth E, Josemans AI, Allsopp BA (2004) Characterisation of the pCS20 region of different Ehrlichia ruminantium isolates. Vet Microbiol 101:279–291

    Article  PubMed  Google Scholar 

  • Van Vliet AHM, Jongejan F, Van Kleef M, Zeijst BAMVD (1994) Molecular cloning, sequence analysis, and expression of the gene encoding the immunodominant 32-kilodalton protein of Cowdria ruminantium. Infect Immunol 62:1451–1456

    Google Scholar 

Download references

Acknowledgment

This work was supported by The European Development Fund, Service Contract No REG/6061/006, Epigenevac project under contract number no. INCO-CT-2005-003713 and ICTTD-2 concerted action project under contract no. ICA4T-2000-30006, through the INCO-DEV program of the European Commission, the Utrecht Scholarship Programme of Utrecht University and The Rural Finance and Community Initiatives project (IFAD, World Bank, The Gambia). The support of Dr. Cornelis Bekker and Jacob De Witte is highly appreciated. We appreciate the support of the field staff of ITC. Bonto Faburay holds a Rothamsted International African Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Faburay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faburay, B., Geysen, D., Munstermann, S. et al. Molecular detection of Ehrlichia ruminantium infection in Amblyomma variegatum ticks in The Gambia . Exp Appl Acarol 42, 61–74 (2007). https://doi.org/10.1007/s10493-007-9073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-007-9073-2

Keywords

Navigation