Skip to main content
Log in

Extending Babuška-Aziz’s theorem to higher-order Lagrange interpolation

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original one given by Babuška-Aziz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, J. J. F. Fournier: Sobolev Spaces. Pure and Applied Mathematics 140, Academic Press, New York, 2003.

    MATH  Google Scholar 

  2. T. Apel: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics, Teubner, Stuttgart, 1999.

    MATH  Google Scholar 

  3. K. E. Atkinson: An Introduction to Numerical Analysis. John Wiley & Sons, New York, 1989.

    MATH  Google Scholar 

  4. I. Babuška, A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. E. Barnhill, J. A. Gregory: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1976), 215–229.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15, Springer, New York, 2008.

    MATH  Google Scholar 

  7. H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York, 2011.

    MATH  Google Scholar 

  8. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Repr., unabridged republ. of the 1978 orig. Classics in Applied Mathematics 40, SIAM, Philadelphia, 2002.

    Book  MATH  Google Scholar 

  9. R. G. Durán: Error estimates for 3-d narrow finite elements. Math. Comput. 68 (1999), 187–199.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Ern, J.-L. Guermond: Theory and Practice of Finite Elements. AppliedMathematical Sciences 159, Springer, New York, 2004.

    Google Scholar 

  11. P. Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse numer., R-1 10 (1976), 43–60. (In French.)

    MathSciNet  Google Scholar 

  12. K. Kobayashi, T. Tsuchiya: A Babuška-Aziz type proof of the circumradius condition. Japan J. Ind. Appl. Math. 31 (2014), 193–210.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Kobayashi, T. Tsuchiya: A priori error estimates for Lagrange interpolation on triangles. Appl. Math., Praha 60 (2015), 485–499.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Křížek: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223–232.

    MathSciNet  MATH  Google Scholar 

  15. M. Křížek: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513–520.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Kufner, O. John, S. Fučík: Function Spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids, Noordhoff International Publishing, Leyden; Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977.

    Google Scholar 

  17. O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva: Linear and Quasilinear Equations of Parabolic Type. Translated from Russian original. Translations of Mathematical Monographs 23, AMS, Providence, 1968.

    MATH  Google Scholar 

  18. N. A. Shenk: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comput. 63 (1994), 105–119.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Yamamoto: Introduction to Numerical Analysis. Saiensu-sha, 2003. (In Japanese.)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Kobayashi.

Additional information

Cordially dedicated to Prof. Ivo Babuška on the occasion of his 90th birthday.

The authors are supported by JSPS Grant-in-Aid for Scientific Research (C) 25400198 and (C) 26400201. The second author is partially supported by JSPS Grant-in-Aid for Scientific Research (B) 23340023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Tsuchiya, T. Extending Babuška-Aziz’s theorem to higher-order Lagrange interpolation. Appl Math 61, 121–133 (2016). https://doi.org/10.1007/s10492-016-0125-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-016-0125-y

Keywords

MSC 2010

Navigation