Skip to main content
Log in

A new one-step smoothing Newton method for second-order cone programming

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we present a new one-step smoothing Newton method for solving the second-order cone programming (SOCP). Based on a new smoothing function of the well-known Fischer-Burmeister function, the SOCP is approximated by a family of parameterized smooth equations. Our algorithm solves only one system of linear equations and performs only one Armijo-type line search at each iteration. It can start from an arbitrary initial point and does not require the iterative points to be in the sets of strictly feasible solutions. Without requiring strict complementarity at the SOCP solution, the proposed algorithm is shown to be globally and locally quadratically convergent under suitable assumptions. Numerical experiments demonstrate the feasibility and efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alizadeh, D. Goldfarb: Second-order cone programming. Math. Program. 95 (2003), 3–51.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y.Q. Bai, G.Q. Wang, C. Roos: Primal-dual interior-point algorithms for second-order cone optimization based on kernel functions. Nonlinear Anal., Theory Methods Appl. 70 (2009), 3584–3602.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Chen, N. Xiu: A global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J. Optim. 9 (1999), 605–623.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. S. Chen, P. Tseng: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program., Ser B 104 (2005), 293–327.

    Article  MathSciNet  MATH  Google Scholar 

  5. F.H. Clarke: Optimization and Nonsmooth Analysis. Wiley & Sons, New York, 1983, Reprinted by SIAM, Philadelphia, 1990.

    MATH  Google Scholar 

  6. R. Debnath, M. Muramatsu, H. Takahashi: An efficient support vector machine learning method with second-order cone programming for large-scale problems. Appl. Intel. 23 (2005), 219–239.

    Article  MATH  Google Scholar 

  7. J. Faraut, A. Korányi: Analysis on Symmetric Cones. Clarendon Press, Oxford, 1994.

    MATH  Google Scholar 

  8. L. Faybusovich: Euclidean Jordan algebras and interior-point algorithms. Positivity 1 (1997), 331–357.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Fukushima, Z.-Q. Luo, P. Tseng: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12 (2002), 436–460.

    Article  MathSciNet  Google Scholar 

  10. S. Hayashi, N. Yamashita, M. Fukushima: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15 (2005), 593–615.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Jiang: Smoothed Fischer-Burmeister equation methods for the complementarity problem. Technical Report. Department of Mathematics, The University of Melbourne, Parille, Victoria, Australia, June 1997.

    Google Scholar 

  12. Y.-J. Kuo, H.D. Mittelmann: Interior point methods for second-order cone programming and OR applications. Comput. Optim. Appl. 28 (2004), 255–285.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret: Applications of second-order cone programming. Linear Algebra Appl. 284 (1998), 193–228.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.D.C. Monteiro, T. Tsuchiya: Polynomial convergence of primal-dual algorithms for the second order program based the MZ-family of directions. Math. Program. 88 (2000), 61–83.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Ma, X. Chen: The convergence of a one-step smoothing Newton method for P0-NCP based on a new smoothing NCP-function. J. Comput. Appl. Math. 216 (2008), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Mifflin: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15 (1977), 959–972.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y.E. Nesterov, M. J. Todd: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8 (1998), 324–364.

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Peng, I. King: Robust BMPM training based on second-order cone programming and its application in medical diagnosis. Neural Networks 21 (2008), 450–457.

    Article  Google Scholar 

  19. J. Peng, C. Roos, T. Terlaky: A new class of polynomial primal-dual interior-point methods for second-order cone optimization based on self-regular proximities. SIAM J. Optim. 13 (2002), 179–203.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Qi, D. Sun: Improving the convergence of non-interior point algorithms for nonlinear complementarity problems. Math. Comput. 69 (2000), 283–304.

    MathSciNet  MATH  Google Scholar 

  21. L. Qi, D. Sun, G. Zhou: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87 (2000), 1–35.

    MathSciNet  MATH  Google Scholar 

  22. L. Qi, J. Sun: A nonsmooth version of Newton’s method. Math. Program. 58 (1993), 353–367.

    Article  MathSciNet  MATH  Google Scholar 

  23. P.K. Shivaswamy, C. Bhattacharyya, A. J. Smola: Second order cone programming approaches for handling missing and uncertain data. J. Mach. Learn. Res. 7 (2006), 1283–1314.

    MathSciNet  MATH  Google Scholar 

  24. S. Hayashi, N. Yamashita, M. Fukushima: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15 (2005), 593–615.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Sasakawa, T. Tsuchiya: Optimal magnetic shield design with second-order cone programming. SIAM J. Sci. Comput. 24 (2003), 1930–1950.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Sun, J. Sun: Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions. Math. Program., Ser A. 103 (2005), 575–581.

    Article  MATH  Google Scholar 

  27. K.C. Toh, R.H. Tütüncü, M. J. Todd: SDPT3 Version 3.02-A MATLAB software for semidefinite-quadratic-linear programming. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

  28. P. Tseng: Error bounds and superlinear convergence analysis of some Newton-type methods in optimization. Nonlinear Optimization and Related Topics (G. Di Pillo, F. Giannessi, eds.). Kluwer Academic Publishers, Dordrecht; Appl. Optim. 36 (2000), 445–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Dong.

Additional information

This work was supported by National Natural Science Foundation of China (10971122), Natural Science Foundation of Shandong Province (Y2008A01), Specialized Research Foundation for the Doctoral Program of Higher Education (20093718110005) and Project of Shandong Province Higher Educational Science and Technology Program (J10LA51).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., He, G., Dong, L. et al. A new one-step smoothing Newton method for second-order cone programming. Appl Math 57, 311–331 (2012). https://doi.org/10.1007/s10492-012-0019-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-012-0019-6

Keywords

MSC 2010

Navigation