Skip to main content
Log in

An accurate active set newton algorithm for large scale bound constrained optimization

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the present strategy and its comparison with some existing active set strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.F. Coleman, Y. Li: On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Program. 67 (1994), 189–224.

    Article  MathSciNet  MATH  Google Scholar 

  2. T.F. Coleman, Y. Li: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6 (1996), 418–445.

    Article  MathSciNet  MATH  Google Scholar 

  3. A.R. Conn, N. I.M. Gould, Ph. L. Toint: Testing a class of methods for solving minimization problems with simple bounds on the variables. ACM Trans. Math. Softw. 7 (1981), 17–41.

    Article  Google Scholar 

  4. A.R. Conn, N. I.M. Gould, Ph. L. Toint: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25 (1988), 433–460.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.R. Conn, N. I.M. Gould, Ph. L. Toint: Correction to the paper on global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 26 (1989), 764–767.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.E. Dennis, J. J. Moré: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28 (1974), 549–560.

    Article  MATH  Google Scholar 

  7. Z. Dostál: A proportioning based algorithm with rate of convergence for bound constrained quadratic programming. Numer. Algorithms 34 (2003), 293–302.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Facchinei: Minimization of SC1 functions and the Maratos effect. Oper. Res. Lett. 17 (1995), 131–137.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Facchinei, A. Fischer, C. Kanzow: On the accurate identification of active constraints. SIAM J. Optim. 9 (1998), 14–32.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Facchinei, J. Júdice, J. Soares: An active set Newton algorithm for large-scale nonlinear programs with box constraints. SIAM J. Optim. 8 (1998), 158–186.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Facchinei, J. Júdice, J. Soares: Generating box-constrained optimization problems. ACM Trans. Math. Softw. 23 (1997), 443–447.

    Article  MATH  Google Scholar 

  12. F. Facchinei, S. Lucidi: Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems. J. Optimization Theory Appl. 85 (1995), 265–289.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Facchinei, S. Lucidi, L. Palagi: A truncated Newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12 (2002), 1100–1125.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.E. Fan, P.H. Chen, C. J. Lin: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6 (2005), 1889–1918.

    MathSciNet  Google Scholar 

  15. P.E. Gill, W. Murray, M.H. Wright: Practical Optimization. Academic Press, London, 1981.

    MATH  Google Scholar 

  16. W.W. Hager, H. Zhang: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17 (2006), 526–557.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Heinkenschloss, M. Ulbrich, S. Ulbrich: Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math. Program. 86 (1999), 615–635.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. S. Keerthi, E.G. Gilbert: Convergence of a generalized SMO algorithm for SVM classifier design. Mach. Learn. 46 (2002), 351–360.

    Article  MATH  Google Scholar 

  19. M. Lescrenier: Convergence of trust region algorithms for optimization with bounds when strict complementarity does not hold. SIAM J. Numer. Anal. 28 (1991), 476–495.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. J. Lin, J. J. Moré: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9 (1999), 1100–1127.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. J. Moré, G. Toraldo: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1 (1991), 93–113.

    Article  MathSciNet  MATH  Google Scholar 

  22. Q. Ni, Y. Yuan: A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization. Math. Comput. 66 (1997), 1509–1520.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Nocedal, S. J. Wright: Numerical Optimization. Springer, New York, 2006.

    MATH  Google Scholar 

  24. C. Oberlin, S. J. Wright: Active set identification in nonlinear programming. SIAM J. Optim. 17 (2006), 577–605.

    Article  MathSciNet  MATH  Google Scholar 

  25. G.Di Pillo, F. Facchinei, L. Grippo: An RQP algorithm using a differentiable exact penalty function for inequality constrained problems. Math. Program. 55 (1992), 49–68.

    Article  MATH  Google Scholar 

  26. B.T. Polyak: The conjugate gradient method in extremal problems. U.S.S.R. Comput. Math. Math. Phys. 9 (1969), 94–112.

    Article  Google Scholar 

  27. K. Schittkowski: More Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, Vol. 282. Springer, Berlin, 1987.

    MATH  Google Scholar 

  28. L. Sun, G. P. He, Y. L. Wang, L. Fang: An active set quasi-Newton method with projected search for bound constrained minimization. Comput. Math. Appl. 58 (2009), 161–170.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Sun, L. Fang, G. P. He: An active set strategy based on the multiplier function or the gradient. Appl. Math. 55 (2010), 291–304.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y.H. Xiao, Z.X. Wei: A new subspace limited memory BFGS algorithm for large-scale bound constrained optimization. Appl. Math. Comput. 185 (2007), 350–359.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Additional information

The work was supported in part by the National Science Foundation of China (10571109, 10901094) and Technique Foundation of STA (2006GG3210009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., He, G., Wang, Y. et al. An accurate active set newton algorithm for large scale bound constrained optimization. Appl Math 56, 297–314 (2011). https://doi.org/10.1007/s10492-011-0018-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-011-0018-z

Keywords

MSC 2010

Navigation