Skip to main content
Log in

Transitive Versus Intransitive Complex Gesture Representation: A Comparison Between Execution, Observation and Imagination by fNIRS

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

The aim of the present study was to examine cortical correlates of motor execution, motor observation and motor imagery of hand complex gestures, in particular by comparing meaningful gestures implying the use of an object (transitive action) or not (intransitive action). Functional near-infrared spectroscopy (fNIRS) was used to verify the presence of partial overlapping between some cortical areas involved in those different tasks. Participants were instructed to observe videos of transitive vs. intransitive gestures and then to execute or imagine them. Gesture execution was associated to greater brain activity (increased oxygenated hemoglobin levels) with respect to observation and imagination in motor areas (premotor cortex, PMC; primary sensorimotor cortex, SM1). In contrast, the posterior parietal cortex (PPC) was more relevantly involved in both execution and observation tasks compared to gesture imagination. Moreover, execution and observation of transitive gestures seemed primarily supported by similar parietal posterior areas when compared with intransitive gestures, which do not imply the presence on a object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For additional information on the stimuli and their validation, please contact Prof. Michela Balconi – michela.balconi@unicatt.it and compare the Method section of the publication Balconi et al., Neuroscience Letters 2017.

References

  • Agnew, Z. K., Wise, R. J. S., & Leech, R. (2012). Dissociating object directed and non-object directed action in the human mirror system; implications for theories of motor simulation. PLoS ONE, 7(4), e32517. doi:10.1371/journal.pone.0032517.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andric, M., & Smal, S. L. (2012). Gesture’s neural language. Frontiers in Psychology, 3(April), 99. doi:10.3389/fpsyg.2012.00099.

    PubMed  PubMed Central  Google Scholar 

  • Babiloni, C., Carducci, F., Cincotti, F., Rossini, P. M., Neuper, C., Pfurtscheller, G., & Babiloni, F. (1999). Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. NeuroImage, 10(6), 658–665. doi:10.1006/nimg.1999.0504.

    Article  PubMed  Google Scholar 

  • Balconi, M., & Caldiroli, C. L. (2011). Semantic violation effect on object-related action comprehension. N400-like event-related potentials for unusual and incorrect use. Neuroscience, 197, 191–199. doi:10.1016/j.neuroscience.2011.09.026.

    Article  PubMed  Google Scholar 

  • Balconi, M., & Canavesio, Y. (2014). The contribution of dorsolateral prefrontal cortex and temporoparietal areas in processing instrumental versus functional semantic violations in action representation. Journal of Clinical and Experimental Neuropsychology, 36(7), 701–715. doi:10.1080/13803395.2014.929093.

    Article  PubMed  Google Scholar 

  • Balconi, M., & Cortesi, L. (2016). Brain activity (fNIRS) in control state differs from the execution and observation of object-related and object-unrelated actions. Journal of Motor Behavior, 48(4), 289–296. doi:10.1080/00222895.2015.1092936.

    Article  PubMed  Google Scholar 

  • Balconi, M., Cortesi, L., & Crivelli, D. (2017). Motor planning and performance in transitive and intransitive gesture execution and imagination: Does EEG (RP) activity predict hemodynamic (fNIRS) response? Neuroscience Letters, 648, 59–65. doi:10.1016/j.neulet.2017.03.049.

    Article  PubMed  Google Scholar 

  • Balconi, M., & Molteni, E. (2016). Past and future of near-infrared spectroscopy in studies of emotion and social neuroscience. Journal of Cognitive Psychology, 28(2), 129–146. doi:10.1080/20445911.2015.1102919.

    Article  Google Scholar 

  • Balconi, M., Vanutelli, M. E., Bartolo, A., & Cortesi, L. (2015). Transitive and intransitive gesture execution and observation compared to resting state: the hemodynamic measures (fNIRS). Cognitive Processing, 16(S1), 125–129. doi:10.1007/s10339-015-0729-2.

    Article  PubMed  Google Scholar 

  • Balconi, M., & Vitaloni, S. (2014a). N400 effect when a semantic anomaly is detected in action representation. A source localization analysis. Journal of Clinical Neurophysiology, 31(1), 58–64. doi:10.1097/WNP.0000000000000017.

    Article  PubMed  Google Scholar 

  • Balconi, M., & Vitaloni, S. (2014b). Dorsolateral pFC and the representation of the incorrect use of an object: the transcranial Direct Current Stimulation effect on N400 for visual and linguistic stimuli. Journal of Cognitive Neuroscience, 26(2), 305–318. doi:10.1162/jocn_a_00500.

    Article  PubMed  Google Scholar 

  • Bartolo, A., Cubelli, R., Della Sala, S., Drei, S., & Marchetti, C. (2001). Double dissociation between meaningful and meaningless gesture reproduction in apraxia. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 37(5), 696–699. doi:10.1016/S0010-9452(08)70617-8.

    Article  Google Scholar 

  • Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G., & Freund, H.-J. (1999). A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. European Journal of Neuroscience, 11(9), 3276–3286. doi:10.1046/j.1460-9568.1999.00753.x.

    Article  PubMed  Google Scholar 

  • Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13(2), 400–404. doi:10.1111/j.1460-9568.2001.01385.x.

    PubMed  Google Scholar 

  • Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H.-J., & Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron, 42(2), 323–334.

    Article  PubMed  Google Scholar 

  • Buxbaum, L. J. (2001). Ideomotor apraxia: A call to action. Neurocase: Case Studies in Neuropsychology, Neuropsychiatry, and Behavioural Neurology, 7(6), 445–458. doi:10.1093/neucas/7.6.445.

    Article  Google Scholar 

  • Buxbaum, L. J., Kyle, K., Grossman, M., & Coslett, B. (2007). Left inferior parietal representations for skilled hand-object interactions: evidence from stroke and corticobasal degeneration. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 43(3), 411–423. doi:10.1016/S0010-9452(08)70466-0.

    Article  Google Scholar 

  • Carmo, J. C., & Rumiati, R. I. (2009). Imitation of transitive and intransitive actions in healthy individuals. Brain and Cognition, 69(3), 460–464. doi:10.1016/j.bandc.2008.09.007.

    Article  PubMed  Google Scholar 

  • Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 1148–1167. doi:10.1016/j.neuroimage.2009.12.112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Catalan, M. J., Honda, M., Weeks, R. A., Cohen, L. G., & Hallett, M. (1998). The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain: A Journal of Neurology, 121, 253–264.

    Article  Google Scholar 

  • Clark, M. A., Merians, A. S., Kothari, A., Poizner, H., Macauley, B., Rothi, L. J. G., & Heilman, K. M. (1994). Spatial planning deficits in limb apraxia. Brain: A Journal of Neurology, 117(5), 1093–1106. doi:10.1093/brain/117.5.1093.

    Article  Google Scholar 

  • Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the Action Observation Network to physical and observational learning. Cerebral Cortex, 19(2), 315–326. doi:10.1093/cercor/bhn083.

    Article  PubMed  Google Scholar 

  • Cubelli, R., Marchetti, C., Boscolo, G., & Della Sala, S. (2000). Cognition in Action: Testing a Model of Limb Apraxia. Brain and Cognition, 44(2), 144–165.

    Article  PubMed  Google Scholar 

  • Culham, J. C., Danckert, S. L., De Souza, J. F. X., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153(2), 180–189. doi:10.1007/s00221-003-1591-5.

    Article  PubMed  Google Scholar 

  • De Renzi, E., Faglioni, P., & Sorgato, P. (1982). Modality-specific and supramodal mechanisms of apraxia. Brain: a journal of neurology, 105(2), 301–312. doi:10.1093/brain/105.2.301.

    Article  Google Scholar 

  • Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Cognitive Brain Research, 3(2), 87–93. doi:10.1016/0926-6410(95)00033-X.

    Article  PubMed  Google Scholar 

  • Decety, J., Grèzes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., et al. (1997). Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain: a Journal of Neurology, 120(10), 1763–1777. doi:10.1093/brain/120.10.1763.

    Article  Google Scholar 

  • Dumont, C., Ska, B., & Schiavetto, A. (1999). Selective impairment of transitive gestures: an unusual case of apraxia. Neurocase: Case Studies in Neuropsychology, Neuropsychiatry, and Behavioural Neurology, 5(5), 447–458. doi:10.1080/13554799908402739.

    Article  Google Scholar 

  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921–935. doi:10.1016/j.neuroimage.2012.03.049.

    Article  PubMed  Google Scholar 

  • Filimon, F., Rieth, C. A., Sereno, M. I., & Cottrell, G. W. (2015). Observed, executed, and imagined action representations can be decoded from ventral and dorsal areas. Cerebral Cortex, 25(9), 3144–3158. doi:10.1093/cercor/bhu110.

    Article  PubMed  Google Scholar 

  • Foundas, A. L., Macauley, B. L., Raymer, A. M., Maher, L. M., Rothi, L. J. G., & Heilman, K. M. (1999). Ideomotor apraxia in Alzheimer disease and left hemisphere stroke: limb transitive and intransitive movements. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 12(3), 161–166.

    PubMed  Google Scholar 

  • Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proceedings of the National Academy of Sciences of the United States of America, 83(4), 1140–1144. doi:10.1073/pnas.83.4.1140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fridman, E. A., Immisch, I., Hanakawa, T., Bohlhalter, S., Waldvogel, D., Kansaku, K., et al. (2006). The role of the dorsal stream for gesture production. NeuroImage, 29(2), 417–428. doi:10.1016/j.neuroimage.2005.07.026.

    Article  PubMed  Google Scholar 

  • Gallese, V., & Goldman, A. I. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501.

    Article  PubMed  Google Scholar 

  • Ganis, G., & Kutas, M. (2003). An electrophysiological study of scene effects on object identification. Cognitive Brain Research, 16(2), 123–144.

    Article  PubMed  Google Scholar 

  • Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19(6), 1239–1255. doi:10.1093/cercor/bhn181.

    Article  PubMed  Google Scholar 

  • Gentili, R. J., Shewokis, P. A., Ayaz, H., & Contreras-Vidal, J. L. (2013). Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Frontiers in Human Neuroscience, 7(July), 277. doi:10.3389/fnhum.2013.00277.

    PubMed  PubMed Central  Google Scholar 

  • Geschwind, N., & Kaplan, E. (1962). A human cerebral disconnection syndrome: a preliminary report. Neurology, 12, 675–685. doi:10.1212/01.wnl.0000397064.67186.38.

    Article  PubMed  Google Scholar 

  • Goldenberg, G. (2003). Apraxia and beyond: life and work of Hugo Liepmann. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 39(3), 509–524. doi:10.1016/S0010-9452(08)70261-2.

    Article  Google Scholar 

  • Goldenberg, G., & Hagmann, S. (1997). The meaning of meaningless gestures: a study of visuo-imitative apraxia. Neuropsychologia, 35(3), 333–341. doi:10.1016/S0028-3932(96)00085-1.

    Article  PubMed  Google Scholar 

  • Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97–117. doi:10.1111/j.1749-6632.2009.04425.x.

    Article  PubMed  Google Scholar 

  • Grafton, S. T., Fagg, A. H., Woods, R. P., & Arbib, M. A. (1996). Functional anatomy of pointing and grasping in humans. Cerebral Cortex, 6(2), 226–237.

    Article  PubMed  Google Scholar 

  • Grezes, J. (1998). Top down effect of strategy on the perception of human biological motion: a PET investigation. Cognitive Neuropsychology, 15(6–8), 553–582. doi:10.1080/026432998381023.

    Article  PubMed  Google Scholar 

  • Grèzes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. NeuroImage, 18(4), 928–937. doi:10.1016/S1053-8119(03)00042-9.

    Article  PubMed  Google Scholar 

  • Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Human Brain Mapping, 12(1), 1–19. doi:10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V.

    Article  PubMed  Google Scholar 

  • Grèzes, J., & Decety, J. (2002). Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40(2), 212–222. doi:10.1016/S0028-3932(01)00089-6.

    Article  PubMed  Google Scholar 

  • Haaland, K. Y., Harrington, D. L., & Knight, R. T. (2000). Neural representations of skilled movement. Brain: A Journal of Neurology, 123, 2306–2313. doi:10.1093/brain/123.11.2306.

    Article  Google Scholar 

  • Hanna-Pladdy, B., Daniels, S. K., Fieselman, M. A., Thompson, K., Vasterling, J. J., Heilman, K. M., & Foundas, A. L. (2001). Praxis lateralization: errors in right and left hemisphere stroke. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 37(2), 219–230.

    Article  Google Scholar 

  • Hatakenaka, M., Miyai, I., Mihara, M., Sakoda, S., & Kubota, K. (2007). Frontal regions involved in learning of motor skill—A functional NIRS study. NeuroImage, 34(1), 109–116. doi:10.1016/j.neuroimage.2006.08.014.

    Article  PubMed  Google Scholar 

  • Heilman, K. M., & Rothi, L. J. G. (1997). Limb apraxia: a look back. In L. J. G. Rothi & K. M. Heilman (Eds.), Apraxia, the neuropsychology of action (pp. 7–18). Hove: Psychology Press.

    Google Scholar 

  • Hermsdörfer, J., Goldenberg, G., Wachsmuth, C., Conrad, B., Ceballos-Baumann, A. O., Bartenstein, P., et al. (2001). Cortical correlates of gesture processing: clues to the cerebral mechanisms underlying apraxia during the imitation of meaningless gestures. NeuroImage, 14(1), 149–161. doi:10.1006/nimg.2001.0796.

    Article  PubMed  Google Scholar 

  • Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575–583. doi:10.1016/j.neubiorev.2009.11.007.

    Article  PubMed  Google Scholar 

  • Hickok, G., & Hauser, M. (2010). (Mis)understanding mirror neurons. Current Biology, 20(14), R593–R594. doi:10.1016/j.cub.2010.05.047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holper, L., Muehlemann, T., Scholkmann, F., Eng, K., Kiper, D., & Wolf, M. (2010). Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS). Journal of NeuroEngineering and Rehabilitation, 7(1), 57. doi:10.1186/1743-0003-7-57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holper, L., & Wolf, M. (2011). Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study. Journal of NeuroEngineering and Rehabilitation, 8(1), 34. doi:10.1186/1743-0003-8-34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoshi, Y. (2007). Functional near-infrared spectroscopy: current status and future prospects. Journal of Biomedical Optics, 12(6), 62106. doi:10.1117/1.2804911.

    Article  Google Scholar 

  • Iacoboni, M., Lieberman, M. D., Knowlton, B. J., Molnar-Szakacs, I., Moritz, M., Throop, C. J., & Fiske, A. P. (2004). Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. NeuroImage, 21(3), 1167–1173. doi:10.1016/j.neuroimage.2003.11.013.

    Article  PubMed  Google Scholar 

  • Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3(3), e79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–2528. doi:10.1126/science.286.5449.2526.

    Article  PubMed  Google Scholar 

  • Ishizu, T., Noguchi, A., Ito, Y., Ayabe, T., & Kojima, S. (2009). Motor activity and imagery modulate the body-selective region in the occipital–temporal area: a near-infrared spectroscopy study. Neuroscience Letters, 465(1), 85–89. doi:10.1016/j.neulet.2009.08.079.

    Article  PubMed  Google Scholar 

  • Jang, S. H., Jang, W. H., Chang, P. H., Lee, S.-H., Jin, S.-H., Kim, Y. G., & Yeo, S. S. (2014). Cortical activation change induced by neuromuscular electrical stimulation during hand movements: a functional NIRS study. Journal of NeuroEngineering and Rehabilitation, 11(1), 29. doi:10.1186/1743-0003-11-29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeannerod, M. (1994). The representing brain: neural correlates of motor intention and imagery. Behavioural and Brain Sciences, 17(2), 187–202. doi:10.1017/S0140525X00034026.

    Article  Google Scholar 

  • Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33(11), 1419–1432. doi:10.1016/0028-3932(95)00073-C.

    Article  PubMed  Google Scholar 

  • Jeannerod, M. (1997). The cognitive neuroscience of action. New York, NY: Wiley.

    Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14, S103–S109. doi:10.1006/nimg.2001.0832.

    Article  PubMed  Google Scholar 

  • Jeannerod, M., & Decety, J. (1995). Mental motor imagery: a window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732.

    Article  PubMed  Google Scholar 

  • Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S. J., & Passingham, R. E. (1994). Motor sequence learning: a study with positron emission tomography. The Journal of Neuroscience, 14(6), 3775–3790.

    PubMed  Google Scholar 

  • Kober, S. E., & Wood, G. (2014). Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: a near-infrared spectroscopy study. NeuroImage, 93, 1–10. doi:10.1016/j.neuroimage.2014.02.019.

    Article  PubMed  Google Scholar 

  • Koehler, S., Egetemeir, J., Stenneken, P., Koch, S. P., Pauli, P., Fallgatter, A. J., & Herrmann, M. J. (2012). The human execution/observation matching system investigated with a complex everyday task: a functional near-infrared spectroscopy (fNIRS) study. Neuroscience Letters, 508(2), 73–77. doi:10.1016/j.neulet.2011.12.021.

    Article  PubMed  Google Scholar 

  • Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Felblinger, J., Vespignani, H., & Braun, M. (2009). Automated cortical projection of EEG sensors: Anatomical correlation via the international 10–10 system. NeuroImage, 46(1), 64–72. doi:10.1016/j.neuroimage.2009.02.006.

    Article  PubMed  Google Scholar 

  • Krams, M., Rushworth, M. F. S., Deiber, M.-P., Frackowiak, R. S. J., & Passingham, R. E. (1998). The preparation, execution and suppression of copied movements in the human brain. Experimental Brain Research, 120(3), 386–398.

    Article  PubMed  Google Scholar 

  • Króliczak, G. (2013). Representations of transitive and intransitive gestures: perception and imitation. Journal of Neuroscience and Neuroengineering, 2(3), 195–210. doi:10.1166/jnsne.2013.1050.

    Article  Google Scholar 

  • Króliczak, G., & Frey, S. H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex, 19(10), 2396–2410. doi:10.1093/cercor/bhn261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leff, D. R., Orihuela-Espina, F., Elwell, C. E., Athanasiou, T., Delpy, D. T., Darzi, A. W., & Yang, G.-Z. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage, 54(4), 2922–2936. doi:10.1016/j.neuroimage.2010.10.058.

    Article  PubMed  Google Scholar 

  • Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J., & DeYoe, E. A. (2005). Distinct cortical pathways for processing tool versus animal sounds. The Journal of Neuroscience, 25(21), 5148–5158. doi:10.1523/JNEUROSCI.0419-05.2005.

    Article  PubMed  Google Scholar 

  • Liepmann, H. (1900). Das Krankheitschild der Apraxie (Motorischen Asymbolie). Monatschrift Psychiatrie Neurol, 8, 15–44, 102–132, 182–197.

  • Lotze, M., Heymans, U., Birbaumer, N., Veit, R., Erb, M., Flor, H., & Halsband, U. (2006). Differential cerebral activation during observation of expressive gestures and motor acts. Neuropsychologia, 44(10), 1787–1795. doi:10.1016/j.neuropsychologia.2006.03.016.

    Article  PubMed  Google Scholar 

  • Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., et al. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. Journal of Cognitive Neuroscience, 11(5), 491–501. doi:10.1162/089892999563553.

    Article  PubMed  Google Scholar 

  • Lui, F., Buccino, G., Duzzi, D., Benuzzi, F., Crisi, G., Baraldi, P., et al. (2008). Neural substrates for observing and imagining non-object-directed actions. Social Neuroscience, 3(3–4), 261–275. doi:10.1080/17470910701458551.

    Article  PubMed  Google Scholar 

  • Matsuda, G., & Hiraki, K. (2006). Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: a NIRS study of children. NeuroImage, 29(3), 706–711. doi:10.1016/j.neuroimage.2005.08.019.

    Article  PubMed  Google Scholar 

  • Matsumura, M., Kawashima, R., Naito, E., Satoh, K., Takahashi, T., Yanagisawa, T., & Fukuda, H. (1996). Changes in rCBF during grasping in humans examined by PET. Neuroreport, 7(3), 749–752.

    Article  PubMed  Google Scholar 

  • Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience and Biobehavioral Reviews, 33(7), 975–980. doi:10.1016/j.neubiorev.2009.03.010.

    Article  PubMed  Google Scholar 

  • Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36(1), 341–349. doi:10.1016/j.neubiorev.2011.07.004.

    Article  PubMed  Google Scholar 

  • Montgomery, K. J., Gobbini, M. I., & Haxby, J. V. (2003). Imitation, production and viewing of social communication: an fMRI study. In Society for Neuroscience Abstracts (p. 128.10).

  • Montgomery, K. J., Isenberg, N., & Haxby, J. V. (2007). Communicative hand gestures and object-directed hand movements activated the mirror neuron system. Social Cognitive and Affective Neuroscience, 2(2), 114–122. doi:10.1093/scan/nsm004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris, J. P., Pelphrey, K. A., & McCarthy, G. (2008). Perceived causality influences brain activity evoked by biological motion. Social Neuroscience, 3(1), 16–25. doi:10.1080/17470910701476686.

    Article  PubMed  Google Scholar 

  • Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cognitive Brain Research, 25(3), 668–677. doi:10.1016/j.cogbrainres.2005.08.014.

    Article  PubMed  Google Scholar 

  • Okamoto, M., Dan, H., Shimizu, K., Takeo, K., Amita, T., Oda, I., et al. (2004). Multimodal assessment of cortical activation during apple peeling by NIRS and fMRI. NeuroImage, 21(4), 1275–1288. doi:10.1016/j.neuroimage.2003.12.003.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  • Peigneux, P., Van der Linden, M., Andres-Benito, P., Sadzot, B., Franck, G., & Salmon, E. (2000). Exploration neuropychologique et par imagerie fonctionnelle cérébrale d’une apraxie visuo-imitative. Revue Neurologique, 156, 459–472.

    PubMed  Google Scholar 

  • Pfurtscheller, G., Bauernfeind, G., Neuper, C., & Lopes da Silva, F. H. (2012). Does conscious intention to perform a motor act depend on slow prefrontal (de)oxyhemoglobin oscillations in the resting brain? Neuroscience Letters, 508(2), 89–94. doi:10.1016/j.neulet.2011.12.025.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2–3), 65–68.

    Article  PubMed  Google Scholar 

  • Plichta, M. M., Herrmann, M. J., Baehne, C. G., Ehlis, A.-C., Richter, M. M., Pauli, P., & Fallgatter, A. J. (2007). Event-related functional near-infrared spectroscopy (fNIRS) based on craniocerebral correlations: Reproducibility of activation? Human Brain Mapping, 28(8), 733–741. doi:10.1002/hbm.20303.

    Article  PubMed  Google Scholar 

  • Poizner, H., Clark, M., Merians, A. S., Macauley, B., Rothi, L. J. G., & Heilman, K. M. (1995). Joint coordination deficits in limb apraxia. Brain: A Journal of Neurology, 118(1), 227–242. doi:10.1093/brain/118.1.227.

    Article  Google Scholar 

  • Ramsey, R., & Hamilton, A. F. D. C. (2010). Understanding actors and object-goals in the human brain. NeuroImage, 50(3), 1142–1147. doi:10.1016/j.neuroimage.2009.12.124.

    Article  PubMed  Google Scholar 

  • Rapcsak, S. Z., Ochipa, C., Beeson, P. M., & Rubens, A. B. (1993). Praxis and the right hemisphere. Brain and Cognition, 23(2), 181–202. doi:10.1006/brcg.1993.1054.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi:10.1146/annurev.neuro.27.070203.144230.

    Article  PubMed  Google Scholar 

  • Rothi, L. J. G., Ochipa, C., & Heilman, K. M. (1991). A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology, 8(6), 443–458. doi:10.1080/02643299108253382.

    Article  Google Scholar 

  • Roy, E. A., Square-storer, P., Hogg, S., & Adams, S. (1991). Analysis of task demands in apraxia. International Journal of Neuroscience, 56(1–4), 177–186. doi:10.3109/00207459108985414.

    Article  PubMed  Google Scholar 

  • Rushworth, M. F. S., Nixon, P. D., & Passingham, R. E. (1997). Parietal cortex and movement. II. Spatial representation. Experimental Brain Research, 117(2), 311–323. doi:10.1007/s002210050225.

    Article  PubMed  Google Scholar 

  • Sadato, N., Campbell, G., Ibáñez, V., Deiber, M., & Hallett, M. (1996). Complexity affects regional cerebral blood flow change during sequential finger movements. The Journal of Neuroscience, 16(8), 2691–2700.

    PubMed  Google Scholar 

  • Schroeter, M. L., Zysset, S., Kruggel, F., & von Cramon, D. Y. (2003). Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. NeuroImage, 19(3), 555–564. doi:10.1016/S1053-8119(03)00155-1.

    Article  PubMed  Google Scholar 

  • Shibuya, K., Sadamoto, T., Sato, K., Moriyama, M., & Iwadate, M. (2008). Quantification of delayed oxygenation in ipsilateral primary motor cortex compared with contralateral side during a unimanual dominant-hand motor task using near-infrared spectroscopy. Brain Research, 1210, 142–147. doi:10.1016/j.brainres.2008.03.009.

    Article  PubMed  Google Scholar 

  • Shimada, S., & Hiraki, K. (2006). Infant’s brain responses to live and televised action. NeuroImage, 32(2), 930–939. doi:10.1016/j.neuroimage.2006.03.044.

    Article  PubMed  Google Scholar 

  • Shimada, S., & Oki, K. (2012). Modulation of motor area activity during observation of unnatural body movements. Brain and Cognition, 80(1), 1–6. doi:10.1016/j.bandc.2012.04.006.

    Article  PubMed  Google Scholar 

  • Shmuelof, L., & Zohary, E. (2005). Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron, 47(3), 457–470. doi:10.1016/j.neuron.2005.06.034.

    Article  PubMed  Google Scholar 

  • Shmuelof, L., & Zohary, E. (2006). A mirror representation of others’ actions in the human anterior parietal cortex. The Journal of Neuroscience, 26(38), 9736–9742. doi:10.1523/JNEUROSCI.1836-06.2006.

    Article  PubMed  Google Scholar 

  • Sitnikova, T., Holcomb, P. J., Kiyonaga, K. A., & Kuperberg, G. R. (2008). Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. Journal of Cognitive Neuroscience, 20(11), 2037–2057. doi:10.1162/jocn.2008.20143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Solodkin, A., Hlustik, P., Chen, E. E., & Small, S. L. (2004). Fine modulation in network activation during motor execution and motor imagery. Cerebral Cortex, 14(11), 1246–1255. doi:10.1093/cercor/bhh086.

    Article  PubMed  Google Scholar 

  • Stamenova, V., Roy, E. A., & Black, S. E. (2010). Associations and dissociations of transitive and intransitive gestures in left and right hemisphere stroke patients. Brain and Cognition, 72(3), 483–490. doi:10.1016/j.bandc.2010.01.004.

    Article  PubMed  Google Scholar 

  • Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos-Baumann, A. O., Frith, C. D., & Frackowiak, R. S. J. (1995). Functional anatomy of the mental representation of upper extremity movements in healthy subjects. Journal of Neurophysiology, 73(1), 373–386.

    PubMed  Google Scholar 

  • Tessari, A., Canessa, N., Ukmar, M., & Rumiati, R. I. (2007). Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain: a journal of neurology, 130(4), 1111–1126. doi:10.1093/brain/awm003.

    Article  Google Scholar 

  • Thanh Hai, N., Cuong, N. Q., Dang Khoa, T. Q., & Van Toi, V. (2013). Temporal hemodynamic classification of two hands tapping using functional near-infrared spectroscopy. Frontiers in Human Neuroscience, 7(September), 516. doi:10.3389/fnhum.2013.00516.

    PubMed  PubMed Central  Google Scholar 

  • Tuscan, L.-A., Herbert, J. D., Forman, E. M., Juarascio, A. S., Izzetoglu, M., & Schultheis, M. (2013). Exploring frontal asymmetry using functional near-infrared spectroscopy: A preliminary study of the effects of social anxiety during interaction and performance tasks. Brain Imaging and Behavior, 7(2), 140–153. doi:10.1007/s11682-012-9206-z.

    Article  PubMed  Google Scholar 

  • Villarreal, M., Fridman, E. A., Amengual, A., Falasco, G., Gerscovich, E. R., Ulloa, E. R., & Leiguarda, R. C. (2008). The neural substrate of gesture recognition. Neuropsychologia, 46(9), 2371–2382. doi:10.1016/j.neuropsychologia.2008.03.004.

    Article  PubMed  Google Scholar 

  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2007). When language meets action: the neural integration of gesture and speech. Cerebral Cortex, 17(10), 2322–2333. doi:10.1093/cercor/bhl141.

    Article  PubMed  Google Scholar 

  • Williams, S. E., Cumming, J., & Edwards, M. G. (2011). The functional equivalence between movement imagery, observation, and execution influences imagery ability. Research Quarterly for Exercise and Sport, 82(3), 555–564. doi:10.1080/02701367.2011.10599788.

    Article  PubMed  Google Scholar 

  • Wilson, T. W., Kurz, M. J., & Arpin, D. J. (2014). Functional specialization within the supplementary motor area: A fNIRS study of bimanual coordination. NeuroImage, 85, 445–450. doi:10.1016/j.neuroimage.2013.04.112.

    Article  PubMed  Google Scholar 

  • Wriessnegger, S. C., Kurzmann, J., & Neuper, C. (2008). Spatio-temporal differences in brain oxygenation between movement execution and imagery: A multichannel near-infrared spectroscopy study. International Journal of Psychophysiology, 67(1), 54–63. doi:10.1016/j.ijpsycho.2007.10.004.

    Article  PubMed  Google Scholar 

  • Yeo, S. S., Chang, P. H., & Jang, S. H. (2013). The cortical activation differences between proximal and distal joint movements of the upper extremities: a functional NIRS study. NeuroRehabilitation, 32(4), 861–866. doi:10.3233/NRE-130910.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Balconi.

Ethics declarations

Conflict of interest

Michela Balconi declares that she has no conflict of interest. Davide Crivelli declares that he has no conflict of interest. Livia Cortesi declares that she has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Written informed consent was obtained from all participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balconi, M., Crivelli, D. & Cortesi, L. Transitive Versus Intransitive Complex Gesture Representation: A Comparison Between Execution, Observation and Imagination by fNIRS. Appl Psychophysiol Biofeedback 42, 179–191 (2017). https://doi.org/10.1007/s10484-017-9365-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-017-9365-1

Keywords

Navigation