Skip to main content

Advertisement

Log in

Increased Muscle Activation Following Motor Imagery During the Rehabilitation of the Anterior Cruciate Ligament

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Motor imagery (MI) is the mental representation of an action without any concomitant movement. MI has been used frequently after peripheral injuries to decrease pain and facilitate rehabilitation. However, little is known about the effects of MI on muscle activation underlying the motor recovery. This study aimed to assess the therapeutic effects of MI on the activation of lower limb muscles, as well as on the time course of functional recovery and pain after surgery of the anterior cruciate ligament (ACL). Twelve patients with a torn ACL were randomly assigned to a MI or control group, who both received a series of physiotherapy. Electromyographic activity of the quadriceps, pain, anthropometrical data, and lower limb motor ability were measured throughout a 12-session therapy. The data provided evidence that MI elicited greater muscle activation, even though imagery practice did not result in pain decrease. Muscle activation increase might originate from a redistribution of the central neuronal activity, as there was no anthropometric change in lower limb muscles after imagery practice. This study confirmed the effectiveness of integrating MI in a rehabilitation process by facilitating muscular properties recovery following motor impairment. MI may thus be considered a reliable adjunct therapy to help injured patients to recover motor functions after reconstructive surgery of ACL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Badia, X., Monserrat, S., Roset, M., & Herdman, M. (1999). Feasibility, validity and test–retest reliability of scaling methods for health states: The visual analogue scale and the time trade-off. Quality of Life Research, 8, 303–310.

    Article  PubMed  Google Scholar 

  • Binkley, J. M., Stratford, P. W., Lott, S. A., & Riddle, D. L. (1999). The lower extremity functional scale (LEFS): Scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Physical Therapy, 79, 371–383.

    PubMed  Google Scholar 

  • Bodian, C. A., Freedman, G., Hossain, S., Eisenkraft, J. B., & Beilin, Y. (2001). The visual analog scale for pain: Clinical significance in postoperative patients. Anesthesiology, 95, 1356–1361.

    Article  PubMed  Google Scholar 

  • Christakou, A., & Zervas, Y. (2007). The effectiveness of imagery on pain, edema, and range of motion in athletes with a grade II ankle sprain. Physical Therapy in Sport, 8, 130–140.

    Article  Google Scholar 

  • Christakou, A., Zervas, Y., & Lavallee, D. (2006). The adjunctive role of imagery on the functional rehabilitation of a grade II ankle sprain. Human Movement Science, 26, 141–154.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Cramer, S. C., Orr, E. L. R., Cohen, M. J., & Lacourse, M. G. (2007). Effects of motor imagery training after chronic, complete spinal cord injury. Experimental Brain Research, 177, 233–242.

    Article  Google Scholar 

  • Cupal, D. D., & Brewer, B. W. (2001). Effects of relaxation and guided imagery on knee strength, reinjury anxiety, and pain following anterior cruciate ligament reconstruction. Rehabilitation Psychology, 46, 28–43.

    Article  Google Scholar 

  • Decety, J., Perani, D., Jeannerod, M., et al. (1994). Mapping motor representations with positron emission tomography. Nature, 371, 600–602.

    Article  PubMed  Google Scholar 

  • Derscheid, G. L., & Feiring, D. C. (1987). A statistical analysis to characterize treatment adherence of the 18 most common diagnoses seen at a sports medicine clinic. Journal of Orthopaedic and Sports Physical Therapy, 9, 40–46.

    PubMed  Google Scholar 

  • Dowling, J. J. (1997). The use of electromyography for the noninvasive prediction of muscle forces: Current issues. Sports Medicine, 24, 82–96.

    Article  PubMed  Google Scholar 

  • Drechsler, W. I., Cramp, W. C., & Scott, O. M. (2006). Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. European Journal of Applied Physiology, 98, 613–623.

    Article  PubMed  Google Scholar 

  • Driediger, M., Hall, C., & Callow, N. (2006). Imagery used by athletes: A qualitative analysis. Journal of Sports Science, 24, 261–271.

    Article  Google Scholar 

  • Ekblom, A., & Hansson, P. (1988). Pain intensity measurements in patients with acute pain receiving afferent stimulation. Journal of Neurology, Neurosurgery and Psychiatry, 51, 481–486.

    Article  Google Scholar 

  • Evans, L., Hare, R., & Mullen, R. (2006). Imagery use during rehabilitation from injury. Journal of Imagery Research in Sport and Physical Activity, 1, 1–21.

    Article  Google Scholar 

  • Green, L. B. (1992). The use of imagery in the rehabilitation of injured athletes. Sport Psychology, 6, 416–428.

    Google Scholar 

  • Guillot, A., & Collet, C. (2008). Construction of the motor imagery integrative model in sport: A review and theoretical investigation of motor imagery use. International Review of Sport Exercise Psychology, 1, 31–44.

    Article  Google Scholar 

  • Häkkinen, K. (1994). Neuromuscular adaptation during strength training, aging, detraining and immobilization. Critical Reviews in Physical and Rehabilitation Medicine, 6, 161.

    Google Scholar 

  • Hale, B. D. (1982). The effects of internal and external imagery on muscular and ocular concomitants. Journal of Sport Psychology, 4, 379–387.

    Google Scholar 

  • Heil, J. (1993). Mental training in injury management. In J. Heil (Ed.), Psychology of sport injury. Champaign, IL: Human Kinetics.

    Google Scholar 

  • Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10, 361–374.

    Article  PubMed  Google Scholar 

  • Hoher, J., Munster, A., Klein, J., Eypasch, E., & Tiling, T. (1995). Validation and application of a subjective knee questionnaire. Knee Surgery, Sports Traumatology, Arthroscopy, 3, 26–33.

    Article  PubMed  Google Scholar 

  • Holmes, P. S., & Collins, D. J. (2001). The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. Journal of Applied Sport Psychology, 13, 60–83.

    Article  Google Scholar 

  • Hortobagyi, T., Dempsey, L., Fraser, D., Zheng, D., Hamilton, G., Lambert, J., et al. (2000). Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. Journal of Physiology, 524, 293–304.

    Article  PubMed  Google Scholar 

  • Ievleva, L., & Orlick, T. (1991). Mental links to enhanced healing: An exploratory study. Sport Psychology, 5, 25–40.

    Google Scholar 

  • Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33, 1419–1432.

    Article  PubMed  Google Scholar 

  • Kaneko, F., Murakami, T., Onari, K., Kurumadani, H., & Kawaguchi, K. (2003). Decreased cortical excitability during motor imagery after disuse of an upper limb in humans. Clinical Neurophysiology, 114, 2397–2403.

    Article  PubMed  Google Scholar 

  • Kosslyn, S. M., Segar, C., Pani, J., & Hillger, L. A. (1990). When is imagery used in everyday life? A diary study. Journal of Mental Imagery, 14, 131–152.

    Google Scholar 

  • Law, B., Driediger, M., Hall, C., & Forwell, L. (2006). Imagery use, perceived pain, limb functioning and satisfaction in athletic injury rehabilitation. New Zealand Journal of Physiotherapy, 34, 10–16.

    Google Scholar 

  • Liepert, J., Tegenthoff, M., & Malin, J. P. (1995). Changes of cortical motor area size during immobilization. Electroencephalography and Clinical Neurophysiology, 97, 382–386.

    Article  PubMed  Google Scholar 

  • Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., et al. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. Journal of Cognitive Neuroscience, 11, 491–501.

    Article  PubMed  Google Scholar 

  • Louis, M., Collet, C., & Guillot, A. (2011). Differences in motor imagery times during aroused and relaxed conditions. Journal of Cognitive Psychology, 23, 374–382.

    Article  Google Scholar 

  • Milne, M., Hall, C., & Forwell, L. (2005). Self-efficacy, imagery use, and adherence to rehabilitation by injured athletes. Journal of Sport Rehabilitation, 14, 150–167.

    Google Scholar 

  • Mizner, R. L., Petterson, S. C., Stevens, J. E., Vandenborne, K., & Snyder-Mackler, L. (2005). Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. Journal of Bone and Joint Surgery, 87, 1047–1053.

    Article  PubMed  Google Scholar 

  • Moseley, G. L. (2006). Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology, 67, 2129–2134.

    Article  PubMed  Google Scholar 

  • Moseley, G. L., Zalucki, N., Birklein, F., Marinus, J., van Hilten, J. J., & Luomajoki, H. (2008). Thinking about movement hurts: The effect of motor imagery on pain and swelling in people with chronic arm pain. Arthritis and Rheumatism, 59, 623–631.

    Article  PubMed  Google Scholar 

  • Newsom, J., Knight, P., & Balnave, R. (2003). Use of mental imagery to limit strength loss after immobilization. Sport Rehabilitation, 2, 249–258.

    Google Scholar 

  • Ranganathan, V. K., Kuykendall, T., Siemionow, V., & Yue, G. H. (2002). Level of mental effort determines training-induced strength increases (abstract). Abstract of the Society for Neuroscience, 32, 768.

    Google Scholar 

  • Ranganathan, V. K., Siemionow, V., Liu, J. Z., et al. (2004). From mental power to muscle power-gaining strength by using the mind. Neuropsychologia, 42, 944–956.

    Article  PubMed  Google Scholar 

  • Richardson, P. A., & Latuda, L. M. (1995). Therapeutic imagery and athletic injuries. Journal of Athletic Training, 30, 10–12.

    PubMed  Google Scholar 

  • Roos, H., Ornell, M., Gardsell, P., Lohmander, L. S., & Lindstrand, A. (1995). Soccer after anterior cruciate ligament injury: An incompatible combination? A national survey of incidence and risk factors and a 7-year follow-up of 310 players. Acta Orthopaedica Scandinavica, 66, 107–112.

    Article  PubMed  Google Scholar 

  • Rushall, B. S., & Lippman, L. G. (1998). The role of imagery in physical performance. International Journal of Sport Psychology, 29, 57–72.

    Google Scholar 

  • Sordoni, C., Hall, C., & Forwell, L. (2000). The use of imagery by athletes during injury rehabilitation. Journal of Sport Rehabilitation, 9, 329–338.

    Google Scholar 

  • Sordoni, C., Hall, C., & Forwell, L. (2002). The use of imagery in athletic injury rehabilitation and its relationship to self-efficacy. Physiotherapy Canada, 54, 177–185.

    Google Scholar 

  • Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., & Swinnen, S. P. (2006). Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Experimental Brain Research, 168, 157–164.

    Article  Google Scholar 

  • Taylor, J., & Taylor, S. (1997). Psychological approaches to sports injury rehabilitation. Gaithersburg, MD: Aspen.

    Google Scholar 

  • Watson, C. J., Propps, M., Ratner, J., Zeigler, D. L., Horton, P., & Smith, S. S. (2005). Reliability and responsiveness of the lower extremity functional scale and the anterior knee pain scale in patients with anterior knee pain. Journal of Orthopaedic and Sports Physical Therapy, 35, 136–146.

    PubMed  Google Scholar 

  • Yeung, T. S., Wessel, J., Stratford, P., & Macdermid, J. (2009). Reliability, validity, and responsiveness of the lower extremity functional scale for inpatients of an orthopaedic rehabilitation ward. Journal of Orthopaedic and Sports Physical Therapy, 39, 468–477.

    PubMed  Google Scholar 

  • Yue, G. H., & Cole, K. J. (1992). Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle. Journal of Neurophysiology, 67, 1114–1123.

    PubMed  Google Scholar 

  • Zijdewind, I., Toering, S. T., Bessem, B., van der Laan, O., & Diercks, R. L. (2003). Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle and Nerve, 28, 168–173.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Collet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebon, F., Guillot, A. & Collet, C. Increased Muscle Activation Following Motor Imagery During the Rehabilitation of the Anterior Cruciate Ligament. Appl Psychophysiol Biofeedback 37, 45–51 (2012). https://doi.org/10.1007/s10484-011-9175-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-011-9175-9

Keywords

Navigation