Skip to main content
Log in

Effects of Music on the Recovery of Autonomic and Electrocortical Activity After Stress Induced by Aversive Visual Stimuli

  • Original Paper
  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the effects of music and white noise on the recovery of physiological measures after stressful visual stimulation. Twenty-nine participants took part in the experiment. Visual stimulation with slides eliciting disgust was followed by subjectively pleasant music, sad music, and white noise in three consecutive sessions. The spectral power of the frontal and temporal EEG, skin conductance, heart rate, heart period variability, facial capillary blood flow, and respiration rate were recorded and analyzed. Aversive visual stimulation evoked heart rate deceleration, increased high frequency component of heart period variability, increased skin conductance level and skin conductance response frequency, decreased facial blood flow and velocity, decreased temporal slow alpha and increased frontal fast beta power in all three sessions. Both subjectively pleasant and sad music led to the restoration of baseline levels on most parameters; while white noise did not enhance the recovery process. The effects of pleasant music on post-stress recovery, when compared to white noise, were significantly different on heart rate, respiration rate, and peripheral blood flow. Both positive and negative music exerted positive modulatory effects on cardiovascular and respiratory activity, namely increased heart rate, balanced heart period variability, increased vascular blood flow and respiration rate during the post-stress recovery. Data only partially supported the “undoing” hypothesis, which states that positive emotions may facilitate the process of physiological recovery following negative emotions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abikoff, H., Courtney, M. E., Szeibel, P. J., & Koplewitcz, H. S. (1996). The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children. Journal of Learning Disabilities, 29, 238–246.

    Article  PubMed  Google Scholar 

  • Alien, K., Golden, L. H., Izzo, J. L., Ching, M., Forrest, A., & Niles, C. R., et al. (2001). Normalization of hypertensive responses during ambulatory surgical stress by perioperative music. Psychosomatic Medicine, 63, 487–492.

    Google Scholar 

  • Altenmuller, E., Schurmann, K., Lim, V. K., & Parlitz, D. (2002). Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia, 40, 2242–2256.

    PubMed  Google Scholar 

  • Anderson, E. A. (1989). Measurement of blood flow and venous distensibility. In N. Schneiderman, S. Weiss, & P. Kaufmann (Eds.), Handbook of research methods in cardiovascular behavioral medicine (pp. 81–90). New York: Plenum Press.

    Google Scholar 

  • Andrade, P. E., & Bhattacharya, J. (2003). Brain tuned to music. Journal of the Royal Society of Medicine, 96, 284–287.

    PubMed  Google Scholar 

  • Amrhein, C., Muhlberger, A., Pauli, P., & Wiedemann, G. (2004). Modulation of event-related brain potentials during affective picture processing. International Journal of Psychophysiology, 54, 231–240.

    PubMed  Google Scholar 

  • Baumgartner, T., Esslen, M., & Jancke, L. (2005). From emotion perception to emotion experience: emotions evoked by pictures and classical music. International Journal of Psychophysiology (in press.).

  • Bernatzky, G., Bernatzky, P., Hesse, H.-P., Staffen, W., & Laduraer, G. (2004). Stimulating music increases motor coordination in patients afflicted with Morbus Parkinson. Neuroscience Letters, 361, 4–8.

    PubMed  Google Scholar 

  • Berntson, G., Bigger, J. T., Eckberg, D., Grossman, P., Kaufinann P. O., & Malik, M., et al. (1997). Heart rate variability: Origins, methods and interpretive caveates. Psychophysiology, 34, 623–648.

    PubMed  Google Scholar 

  • Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy Sciences USA, 98, 11818–11823.

    Google Scholar 

  • Boiten, F. A., Frijda, N. H., & Wientjes, C. J. E. (1994). Emotions and respiratory patterns: Review and critical analysis. International Journal of Psychophysiology, 17, 103–128.

    PubMed  Google Scholar 

  • Boucsein, W. (1992). Electrodermal activity. New York: Plenum Press.

    Google Scholar 

  • Boucsein, W. (1999). Electrodermal activity as an indicator of emotional processes. Korean Journal of the Science of Emotion & Sensibility, 2, 1–25.

    Google Scholar 

  • Boucsein, W., & Ottman, W. (1996). Psychophysiological stress effects from the combination of night-shift work and noise. Biological Psychology, 42, 301–322.

    PubMed  Google Scholar 

  • Brady, M. M., & Lang, P. J. (1999). International affective digitized sounds (IADS): Stimuli, instruction manual and affective ratings. Technical report B-2, The Center for Research in Psychophysiology, Gainesville, University of Florida.

  • Brattico, E., Jacobsen, T., De Baene, W., Nakai, N., & Tervaniemi, M. (2003). Electrical brain responses to descriptive versus evaluative judgments of music. Annals of New York Academy of Sciences, 999, 155–157.

    Google Scholar 

  • Brauchli, P., Michel, C. M., & Zeier, H. (1995). Electrocortical, autonomic and subjective responses to rhythmic audio-visual stimulation. International Journal of Psychophysiology, 19, 53–66.

    PubMed  Google Scholar 

  • Breitling, D., Guentner, W., & Rondot, P. (1987). Auditory perception of music measured by brain electrical activity mapping. Neuropsychologia, 5, 765–774.

    Google Scholar 

  • Burns, J., Labbe, E., Williams, K., & McCall, J. (1999). Perceived and physiological indicators of relaxation: As different as Mozart and Alice in chains. Applied Psychophysiology and Biofeedback, 24, 197–202.

    Google Scholar 

  • Cacioppo, J. T., Klein, D. J., Bernston, G. G., & Hatfield, E. (1993). The psychophysiology of emotion. In M. Lewis & G. Haviland (Eds.), Handbook of emotions (pp. 119–142). New York: Guilford.

  • Cuthbert, B., Bradley, M., & Lang, P. J. (1996). Probing picture perception: Activation and emotion. Psychophysiology, 33, 103–11.

    PubMed  Google Scholar 

  • Cuthbert, B. N., Schrupp, H. T., Bradley, M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective processing: covariation with autonomic arousal and affective report. Biological Psychology, 52, 95–111.

    PubMed  Google Scholar 

  • Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition, 20, 125–151.

    Google Scholar 

  • Davidson, R. J. (1995). Cerebral asymmetry, emotion, and affective style. In R. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 361–387). Cambridge: MIT Press.

  • Davidson, R. J. (1998). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35, 607–614.

    PubMed  Google Scholar 

  • Davidson, R., & Schwartz, G. (1977). The influence of musical training on patterns of EEG asymmetry during musical and non-musical self-generation tasks. Psychophysiology, 14, 58–63.

    PubMed  Google Scholar 

  • Dunn, D. S., & Dougherty, S. B. (2005). Prospects for a positive psychology of rehabilitation. Rehabilitation Psychology, 50, 305–311.

    Google Scholar 

  • Fauerbach, J. A., Lawrence, J. W., Haythornthwaite, J., & Richter, L. (2002). Coping with stress of a painful medical procedure. Behavioural Research and Therapy, 40, 1003–1015.

    Google Scholar 

  • Fredrickson, B. (1997). Vagal tone moderates the undoing effects of positive emotions. Psychophysiology, 34, S36.

    Google Scholar 

  • Fredrikson, B. L. (1998). What good are positive emotions? Reviews of General Psychology, 2, 300–319.

    Google Scholar 

  • Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218–226.

    PubMed  Google Scholar 

  • Fredrickson, B., Branigan, C., & Tugade, M. (1998). Further evidence for the undoing effects of positive emotions. Psychophysiology, 35, S32.

    Google Scholar 

  • Fredrickson, B. L., & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition and Emotion, 12, 191–220.

    Google Scholar 

  • Gomez, P., & Danuser, B. (2004). Affective and physiological responses to environmental noises and music. International Journal of Psychophysiology, 53, 91–103.

    PubMed  Google Scholar 

  • Gray, J. A. (1982). The neuropsychology of anxiety: An inquiry into the functions of the septo-hippocampal system. Oxford: Clarendon Press.

    Google Scholar 

  • Grossman, P., Karemaker, J., & Weiling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: The need for respiratory control. Psychophysiology, 25, 201–216.

    Google Scholar 

  • Grossman, P., & Kollai, M. (1993). Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: Within- and between-individual relations. Psychophysiology, 30, 486–495.

    PubMed  Google Scholar 

  • Hagemann, D., Waldstein, S. R., & Thayer, J. F. (2003). Central and autonomic nervous system integration in emotion. Brain and Cognition, 52, 79–87.

    PubMed  Google Scholar 

  • Hamel, W. J. (2001). The effects of music intervention on anxiety in the patient waiting for cardiac catheterization. Intensive Critical Care Nursing, 17, 279–285.

    PubMed  Google Scholar 

  • Hamm, A. O., Schupp, H. T., & Weike, A. I. (2003). Motivational organization of emotions: autonomic changes, cortical responses, and reflex modulation. In R. J. Davidson, K. R.Scherer, & H. Goldsmith (Eds.), Handbook of affective sciences (pp. 187–211). Oxford University Press: New York.

    Google Scholar 

  • Hamm, A., & Vaitl, D. (1993). Emotionsinduktion dursh visuelle reize: Validierung einer stimulationsmethode auf drei reaktionsebenen. Psychologische Rundschau, 44, 143–161.

    Google Scholar 

  • Hermans, D., De Houwer, J., & Eelen, P. (1996). Evaluative decision latencies mediated by induced affective states. Behaviour Research and Therapy, 34, 483–488.

    PubMed  Google Scholar 

  • Hubert, W., & de Jong-Meyer, R. (1990). Psychophysiological response patterns to positive and negative film stimuli. Biological Psychology, 31, 73–93.

    Google Scholar 

  • Iwaki, T., Ogata, S., Hayashi, M., & Hori, T. (1995). Effects of music upon arousal level. Japanese Journal of EEC andEMG, 23, 10–16 (In Japanese, English abstract).

    Google Scholar 

  • Iwaki, T., Hayashi, M., & Hori, T. (1996). Study of arousal modulatory effects of different affectional music on EEG activity. Japanese Journal of EEG and EMG, 24, 30–37 (In Japanese, English abstract).

    Google Scholar 

  • Iwaki, T., Hayashi, M., & Hori, T. (1997). Changes in alpha band EEG activity in the frontal area after stimulation with music of different affective content. Perceptual and Motor Skills, 84, 515–526.

    PubMed  Google Scholar 

  • Iwanaga, M., Dceda, M., & Iwaki, T. (1996). Effects of repetitive exposure of music on subjective and physiological responses. Journal of Music Therapy, 33, 219–230.

    Google Scholar 

  • Iwanaga, M., & Moroki, Y. (1999). Subjective and physiological responses to music stimuli controlled over activity and preference. Journal of Music Therapy, 36, 26–38.

    PubMed  Google Scholar 

  • Janata, P. (1995). ERP measures assay the degree of expectancy violation of harmonic context in music. Journal of Cognitive Neuroscience, 7, 153–164.

    Article  Google Scholar 

  • Janata, P., & Petsche, H. (1993). Spectral analysis of EEG as a tool for evaluating expectancy violations of musical contexts. Music Perception, 10, 281–304.

    Google Scholar 

  • Jeong, J., Joung, M. K., & Kim, S. Y. (1998). Quantification of emotion by nonlinear analysis of the chaotic dynamics of electroencephalograms during perception of 1/f music. Biological Cybernetics, 78, 217–225.

    PubMed  Google Scholar 

  • Kaiser, J., Hinton, J. W., Krohne, H. W., Stewart, R., & Burton, R. (1995). Coping disposition and physiological recovery from a speech preparation stressor. Personality and Individual Differences, 19, 1–11.

    Google Scholar 

  • Khalfa, S., Peretz, I., Blondin, J.-P., & Manon, R. (2002). Event-related skin conductance responses to musical emotions in humans. Neuroscience Letters, 328, 145–149.

    PubMed  Google Scholar 

  • Khalfa, S., Schon, D., Anton, J. L., & Liegeois-Chauvel, C. (2005). Brain regions involved in the recognition of happiness and sadness in music. Neuroreport, 16, 1981–1984.

    PubMed  Google Scholar 

  • Kneafsey, R. (1997). The therapeutic use of music in a care of the elderly setting: a literature review. Journal of Clinical Nursing, 6, 341–346.

    PubMed  Google Scholar 

  • Klorman, R., Weisberg, R. P., & Austin, M. L. (1975). Autonomic responses to affective visual stimuli. Psychophysiology, 12, 553–560.

    PubMed  Google Scholar 

  • Knight, W. E. J., & Rickard, N. S. (2001). Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. Journal of Music Therapy, 38, 254–272

    PubMed  Google Scholar 

  • Koelsch, S., Gunter, T., Friederici, A. D., & Schroger, E. (2000). Brain indices of music processing: “nonmusicians” are musical. Journal of Cognitive Neuroscience, 12, 520–541.

    PubMed  Google Scholar 

  • Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9, 578–584.

    PubMed  Google Scholar 

  • Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology, 51, 336–353.

    PubMed  Google Scholar 

  • Lacey, J. L., & Lacey, B. C. (1970). Some autonomic-central nervous system interrelationships. In P. Black (Ed.), Physiological correlates of emotion (pp. 205–227). New York: Academic Press.

    Google Scholar 

  • Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50, 372–385.

    PubMed  Google Scholar 

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. (2001). International Affective Picture System (IAPS): Instruction manual and affective rating. Technical Report A-5. The Center for Research in Psychophysiology, Gainsville, University of Florida.

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). Motivated attention: Affect, activation, and action. In P. J. Lang, R. F. Simons, & M. T. Balaban (Eds.), Attention and orienting (pp. 97–135). Hillsdale, NJ: Erlbraum.

  • Lee, K.-R, Kim, J.-E., Yi, I., & Sohn, J.-H. (1997). A comparative study of emotions using the International Affective Picture System. Proceedings 1997 Conference of Korean Society for Emotion and Sensibility, Seoul, November, 29, 220–223 (In Korean, English summary).

  • Lee, K.-H., Sokhadze, E., Jang, E.-H., Yang, G.-H., & Sohn, J.-H. (2000). Reproducibility of physiological patterns in disgust visual stimulation design. Proceedings KOSES Fall Meeting, KIST, Seoul, November 24, 73–80.

  • Lenton, S. R., & Martin, P. R. (1991). The contribution of music vs. instructions in the Musical Mood Induction Procedure. Behaviour Research and Therapy, 29, 623–625.

    PubMed  Google Scholar 

  • Levenson, R. W. (1992). Autonomic nervous system patterning in emotion. Psychological Science, 3, 23–27.

    Google Scholar 

  • Levenson R. W. (1994). The search for autonomic specificity. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion (pp. 252–257). New York: Oxford University Press.

    Google Scholar 

  • Loui, P., Grent-Jong, T., Torpey, D., & Woldorff, M. (2005). Effects of attention on the neural processing of harmonic syntax in Western music. Cognitive Brain Research, 25, 678–687.

    PubMed  Google Scholar 

  • Lou, M.-F. (2001). The use of music to decrease agitated behaviour of the demented elderly: The state of the science. Scandinavian Journal of Caring Sciences, 15, 165–172.

    PubMed  Google Scholar 

  • McFarland, R. A. (1985). Relationship of skin temperature changes to the emotions accompanying music. Biofeedback and Self-Regulation, 10, 255–267.

    PubMed  Google Scholar 

  • Miluk-Kolasa, B., Matejek, M., & Stupnicki, R. (1996). The effects of music listening on changes in selected physiological parameters in adult pre-surgical patients. Journal of Music Therapy, 33, 208–218.

    Google Scholar 

  • Nyklicek, I., Thayer, J. F., & Van Doornen, L. J. (1997). Cardiorespiratory differentiation of musically-induced emotions. Journal of Psychophysiology, 11, 304–321.

    Google Scholar 

  • Ogata, S. (1992). Effects of music sound pressure patterns upon EEG and psychological effects of music. Japanese. Journal for EEG and EMG, 20, 337–346 (In Japanese, English abstract).

    Google Scholar 

  • Paccetti, C., Aglieri, R., Mancini, F., Martignoni, E., & Nappi, G. (1998). Active music therapy and Parkinson’s disease: Methods. Functional Neurology, 13, 57–67.

    Google Scholar 

  • Panksepp, J., & Bernatzky, G. (2002). Emotional sounds and the brain: the neuroaffective foundations of music appreciation. Behavioural Processes, 60, 133–155.

    PubMed  Google Scholar 

  • Palomba, D., Angrilli, A., & Mini, A. (1997). Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli. Journal of Psychophysiology, 27, 55–67.

    Google Scholar 

  • Papillo, J. F., & Shapiro, D. (1990). Cardiovascular system. In J. Cacioppo, & L. Tassinary (Eds.), Principles of psychophysiology: Physical, social and inferential elements (pp. 451–512). Cambridge: Cambridge University Press.

    Google Scholar 

  • Peretz, I. (2001). Listen to the brain: The biological perspective on musical emotions. In P. Juslin & J. Sloboda (Eds.), Music and emotion: Theory and research (pp. 105–134). Oxford: University Press.

    Google Scholar 

  • Peretz, I. (2006). The nature of music from biological perspective. Cognition (in press).

  • Poulton, E. (1979). Composite model for human performance in continuous noise. Psychological Review, 86, 361–375.

    PubMed  Google Scholar 

  • Roger, S. M., Chapin, K., & Brotons, M. (1999). Is music therapy an effective intervention for dementia? A meta-analytic review of literature. Journal of Music Therapy, 36, 2–15.

    Google Scholar 

  • Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity distinguishes valence and intensity of musical emotions. Cognition & Emotion, 15, 487–500.

    Google Scholar 

  • Schneider, N., Schedlowski, M., Schurmeyer, T. H., & Becker, H. (2001). Stress reduction through music in patients undergoing cerebral angiography. Neuroradiology, 43, 472–476.

    PubMed  Google Scholar 

  • Sherratt, K., Thornton, A., & Hatton, C. (2004). Music interventions for people with dementia: A review of the literature. Aging & Mental Health, 8, 3–12.

    Google Scholar 

  • Silberman, E. K., & Weingarten, H. (1986). Hemispheric lateralization of functions related to emotion. Brain and Cognition, 5, 322–353.

    PubMed  Google Scholar 

  • Sohn, J.-H., Sokhadze, E. M., Choi, S., Lee, K.-H., & Yi, I. (1997). Electrodermal and EEG responses associated with emotions induced by auditory stimulation. Experimental Neurobiology, 6, 71–78.

    Google Scholar 

  • Sohn, J.-H., Yi, I., Sokhadze, E., Kirn, J.-E., & Choi, S. (1998a). The effects of 1/f music on the psychophysiological responses induced by stressful visual stimulation. Korean Journal of Science of Emotion and Sensibility, 1, 135–143 (in Korean, English abstract).

    Google Scholar 

  • Sohn, J.-H., Sokhadze, E., Yi, I., Lee, K.-H., & Hong, J.-W. (1998b). Skin conductance responses to the emotions induced by auditory stimulation of positive and negative valence. Proceedings 5th International Conference on Music Perception and Cognition, August 26–30, 1998 (pp. 455–457). Seoul, Korea, August 26–30.

  • Sohn, J.-H., Sokhadze, E., Yi, I., Lee, K.-H., & Choi, S. (1998c). Patterns of autonomic responses to affective visual stimulation: Skin conductance responses, heart rate and respiration rate vary across discrete elicited emotions. Korean Journal Science of Emotion & Sensibility, 1, 79–91.

    Google Scholar 

  • Sohn, J.-H., Yi, I., Lee, K.-H., & Sokhadze, E. (1998d). ANS and EEG differentiation of emotions induced by pictorial stimuli. Psychophysiology, 35, S75.

    Google Scholar 

  • Sohn, J. H., Sokhadze, E. M., Min, Y.-K., Lee, K.-H., & Yi, I. (1999a). The role of background noise intensity on physiological activity during performance of mental task. Journal of Acoustic Society of Korea, 18(s), 269–273.

    Google Scholar 

  • Sohn, J.-H., Sokhadze, E., Choi, S., Lee, K.-H., & Yi, I. (1999b). Electroencephalographic manifestations of transient stress responses during attending and performance of mental task combined with loud noise. Korean Journal of Science of Emotion and Sensibility, 2, 137–145.

    Google Scholar 

  • Sohn, J.-H., Sokhadze, E., Choi, S., & Lee, K.-H. (2000). Autonomic, respiratory and subjective effects of long-term exposure to aversive loud noise: Tonic effects in accumulated stress model. Korean Journal of Science of Emotion and Sensibility, 3, 37–42.

    Google Scholar 

  • Sokhadze, E., Yi, I., Choi, S., Lee, K.-H., & Sohn, J.-H. (1998). Physiological indicators of emotion and attention processes during affective and orienting auditory stimulation. Proceedings of Australian Physiological and Pharmacological Society, 29, 139.

    Google Scholar 

  • Sokhadze, E., & Sohn, J.-H. (2000). The effects of habituation and sensitization on psychophysiological differentiation of responses to auditory stimulation with automobile horns. Korean Journal of Science of Emotion and Sensibility, 3, 17–28.

    Google Scholar 

  • Sokhadze E., Lee K.-H., Kim Y.-K., Park M.-K., & Sohn J.-H. (2000a). Effects of long-tern exposure to loud noise on tonic autonomic responses. Proceedings of the 5th International Congress on Physiological Anthropology (pp. 75–78). Seoul, Korea, October 1–5.

  • Sokhadze, E., Lee, K.-H., Lee, J.-M., Oh, J.-I., & Sohn, J.-H. (2000b). Modulation of the time course of cardiac chronotropic responses during exposure to affective pictures. Proceeding of the 2000 Spring Conference of KOSES & International Sensibility Ergonomics Symposium (pp. 290–300). Taejon, Korea, June 2–3.

  • Sokhadze, E., Lee, K.-H., Sohn, J.-H. (2000c). Psychophysiological reactivity to affective visual stimulation of negative emotional valence: Comparative analysis of autonomic and frontal responses to the IAPS and the KAPS. Korean Journal of Science of Emotion and Sensibility, 3(2), 29–36.

    Google Scholar 

  • Spence, S., Shapiro, D., & Zaidel, E. (1996). The role of the right hemisphere in the physiological and cognitive components of emotional processing. Psychophysiology, 33, 112–122.

    Google Scholar 

  • Stemmler, G. (1992). The vagueness of specificity: Models of peripheral physiological emotion specificity in emotion theories and their experimental discriminability. Journal of Psychophysiology, 6, 17–28.

    Google Scholar 

  • Strauser, J. M. (1997). The effects of music versus silence on measures of state anxiety, perceived relaxation, and physiological responses of patients receiving chiropractic interventions. Journal of Music Therapy, 34, 88–105.

    Google Scholar 

  • Sutoo, D., & Akiyama, K. (2004). Music improves dopaminergic neurotransmission: demonstration based on the effects of music on blood pressure regulation. Brain Research, 1016, 255–262.

    PubMed  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation, 93, 1043–1065.

    Google Scholar 

  • Thorgaad, B., Henriksen, B. B., Pedesbaek, G., & Thomsen, I. (2004). Specially selected music in the cardiac laboratory–an important tool for improvement of the wellbeing of patients. European Journal of Cardiovascular Nursing, 3, 21–26.

    Google Scholar 

  • Tugade, M. M., & Fredrickson, B. L. (2004). Resilient individuals use positive emotions to bounce back from negative emotional experiences. Journal of Personality and Social Psychology, 86, 320–333.

    PubMed  Google Scholar 

  • Tugade, M. M., Fredrickson, B. L., & Feldman Barrett, L. (2004). Psychological resilience and positive emotional granularity: examining the benefits of positive emotions on coping and health. Journal of Personality, 72, 1161–1190.

    PubMed  Google Scholar 

  • Turner, R. P. (2004). The acute effect of music on interictal epileptiform discharges. Epilepsy Behavior, 5, 662–668.

    PubMed  Google Scholar 

  • Vanderark, S., & Ely, D. (1994). University biology and music majors’ emotional ratings of musical stimuli and their physiological correlates of heart rate, finger temperature, and blood pressure. Perceptual and Motor Skills, 79, 1391–1397.

    PubMed  Google Scholar 

  • Voss, R. F., & Clarke, J. (1975). ‘1/f’ noise’ in music and speech. Nature, 258, 317–318.

    Google Scholar 

  • Voss, R. F., & Clarke, J. (1978). 1/f noise in music: Music from 1/f noise. Journal of Acoustic Society of America, 63, 258–263.

    Google Scholar 

  • Walker, J. L. (1977). Subjective reactions to music and brainwave rhythms. Physiological Psychology, 5, 483–489.

    Google Scholar 

  • Walker, J. L. (1980). Alpha EEG correlates of performance on a music recognition task. Physiological Psychology, 8, 417–420.

    Google Scholar 

  • Watkins, G. (1997). Music therapy: Proposed physiological mechanisms and clinical implications. Clinical Nurse Specialist, 11, 43–50.

    PubMed  Google Scholar 

  • White, J. M. (1999). Effects of relaxing music on cardiac autonomic balance and anxiety after acute myocardial infarction. American Journal of Critical Care, 8, 220–230.

    PubMed  Google Scholar 

  • Witvlet, C., & Vrana, S. (1995). Psychophysiological responses as indices of affective dimensions. Psychophysiology, 32, 436–443.

    Google Scholar 

  • Zatorre, R. J. (2003). Music and the brain. Annals New York Academy Sciences, 999, 4–14.

    Google Scholar 

Download references

Acknowledgements

This project was supported by Korea Institute of Science and Technology Evaluation and Planning (KISTEP) and Science and Technology Evaluation and Planning Institute (STEPI) exchange visiting scientist grants to Estate Sokhadze. The author would like to thank professor Jin-Hun Sohn for the mentorship, graduate student Kyung-Hwa Lee for technical assistance with collection, handling and pre-processing of experimental data; and professor Wolfram Boucsein for his valuable comments and suggestions regarding a draft version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate M. Sokhadze.

Additional information

Based on the criteria for the selection of appropriate analytical epochs for HPV analysis, 1-min recording epochs used here are sufficient to assess the HF component of HPV. However, at least a 2 min recording epoch is recommended for the correct assessment of the power of LF band (Berntson et al., 1997). Thus, by these standards, the LF component of HPV in our study was recorded without sufficient accuracy due to shorter than recommended epoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokhadze, E.M. Effects of Music on the Recovery of Autonomic and Electrocortical Activity After Stress Induced by Aversive Visual Stimuli. Appl Psychophysiol Biofeedback 32, 31–50 (2007). https://doi.org/10.1007/s10484-007-9033-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-007-9033-y

Keywords

Navigation