Skip to main content
Log in

Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The heat transfer of Homann flow in the stagnation region of the Al2O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk. The effects of the nanoparticle shape, the viscous dissipation, and the nonlinear radiation are considered. The governing equations are obtained by using similarity transformations, and the numerical outcomes for the flow and the temperature field are noted by bvp4c on MATLAB. The numerical solutions of the flow field are compared with the asymptotic behaviors of large shear-to-strain-rate ratio. The effects of variations of parameters involved are inspected for both nanofluid and hybrid nanofluid flows, temperature profiles, local Nusselt numbers, and skin frictions. It is concluded that the velocity and temperature fields in the hybrid nanophase function more rapidly than those in the nanofluid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EASTMAN, J. A. and CHOI, S. U. S. Increasing the thermal conductivity of fluids by using nanoparticles. Developments and Applications of Non-Newtonian Flows, 231, 99–105 (1995)

    Google Scholar 

  2. KANG, H. U., KIM, S. H., and OH, J. M. Evaluation of thermal conductivity of nanofluid by using experimental effective particle volume. Experimental Heat Transfer, 19, 181–191 (2006)

    Article  Google Scholar 

  3. HSIAO, K. L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850–861 (2016)

    Article  Google Scholar 

  4. HSIAO, K. L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. International Journal of Heat and Mass Transfer, 112, 983–990 (2017)

    Article  Google Scholar 

  5. HSIAO, K. L. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method. Energy, 130, 486–499 (2017)

    Article  Google Scholar 

  6. GHADIKOLAEI, S. S., YASSARI, M., SADEGHI, H., HOSSEINZADEH, K., and GANJI, D. D. Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation-point flow. Powder Technology, 322, 428–438 (2017)

    Article  Google Scholar 

  7. MEHRYAN, S. A. M., KASHKOOLI, F. M., GHALAMBAZ, M., and CHAMKHA, A. J. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Advanced Powder Technology, 28, 2295–2305 (2017)

    Article  Google Scholar 

  8. GHADIKOLAEI, S. S., HOSSEINZADEH, K., HATAMI, M., and GANJI, D. D. Investigation of MHD boundary layer for micropolar having hybrid nanofluid dusty fluid (Cu-Al2O3) over a porous medium. Journal of Molecular Liquids, 268, 813–823 (2018)

    Article  Google Scholar 

  9. GANJI, D. D., POURMEHRAN, O., RAHIMI, G. M., and BANDPY, M. G. Analysis of the impact of squeezing nanofluid simulation, MHD effect and unsteady case on heat conduction parameters. Journal of the Taiwan Institute of Chemical Engineers, 67, 467–475 (2018)

    Google Scholar 

  10. SHARMA, R. P., MISHRA, R. S., and MUNJAN, S. R. Influence of MHD and thermal radiation on three-dimensional flow and heat conduction of nanofluid past a shrinking sheet. International Journal of Applied Mechanics and Engineering, 24, 183–199 (2019)

    Article  Google Scholar 

  11. WANG, C. Y. Investigation of the axisymmetric steam flow in the presence of MHD, heat sink/source and viscous dissipation effect over an axisymmetric shrinking sheet. Journal of Non-Linear Mechanics, 43, 377–382 (2018)

    Article  Google Scholar 

  12. RAJOTIA, D. and JAT, R. N. Three-dimensional magnetohydrodynamics axisymmetric stagnation flow and heat transfer due to an axisymmetric shrinking/stretching sheet with viscous dissipation and heat source/sink. Chinese Physics B, 23, 1–9 (2018)

    Google Scholar 

  13. GHASEMI, S. E., JING, D., GANJI, D. D., and HATAMI, M. Numerical investigation on nanofluid flow in the presence of MHD effect and thermal radiation over a stretching surface. Journal of Molecular Liquids, 268, 813–823 (2018)

    Article  Google Scholar 

  14. LI, Q. and XUAN, Y. Analysis on flow features and convective heat transfer on nanofluids. ASME Journal of Heat Transfer, 125, 151–155 (2003)

    Article  Google Scholar 

  15. GHOLINIA, S., GANJI, D. D., GHOLINIA, M., and HOSSEINZADEH, K. H. Analysis of ethylene glycol nanofluid flow in the presence of magnetic field over vertical permeable cylinder. Results in Physics, 9, 1525–1533 (2018)

    Article  Google Scholar 

  16. HASSAN, M., ABDULLAH, A. L., MARIN, M., and ELLAAHI, R. Nanofluid flow convective heat conduction in a porous medium over a wavy cylinder. Physics Letters A, 382, 2749–2753 (2018)

    Article  MathSciNet  Google Scholar 

  17. HAYAT, T., ALSAEDI, A., KHAN, M., and MUHAMMAD, T. Three-dimensional flow model of nano fluid with mass and heat-flux. Chinese Journal of Physics, 55, 1495–1510 (2017)

    Article  Google Scholar 

  18. HIEMENZ, K. Die Grenzschicht an einem in den gleichförmingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler Polytechic Journal, 326, 321–410 (1911)

    Google Scholar 

  19. HOMANN, F. Der Einfluss grosser Zahigkeit bei Stromung um Zylinder, Z. Angew. Journal of Applied Mathematics and Mechanics, 16, 153–164 (1936)

    Article  Google Scholar 

  20. HOWARTH, L. The boundary layer equations in three-dimensional flow, part II: the flow near a stagnation-point. Philosophical Magazine, 42, 1433–1440 (1951)

    MathSciNet  MATH  Google Scholar 

  21. DAVEY, A. Boundary-layer flow at a saddle point of attachment. Journal of Fluid Mechanics, 10, 593–610 (1961)

    Article  MathSciNet  Google Scholar 

  22. DAVEY, A. and SCHOFIELD, D. Three-dimensional flow near a two-dimensional stagnationpoint. Journal of Fluid Mechanics, 28, 149–151 (1967)

    Article  Google Scholar 

  23. WEIDMAN, P. D. Non-axisymmetric Homann stagnation-point flows. Journal of Fluid Mechanics, 702, 460–469 (2012)

    Article  MathSciNet  Google Scholar 

  24. DINARVAND, S., HOSSEINI, R., and POP, I. Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nano fluid using Tiwari-Das nano fluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 26, 40–62 (2016)

    Article  MathSciNet  Google Scholar 

  25. TIWARI, R. K. and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat Mass Transfer, 50, 2002–2018 (2007)

    Article  Google Scholar 

  26. AMIRI, A. J., ARDAHAIE, S. S., GANJI, D. D., and HOSSEINZADEH, K. H. Impact of variable Lorentz force on a nanofluid flow in a moveable plate. Case Studies in Thermal Engineering, 10, 595–610 (2017)

    Article  Google Scholar 

  27. LIGHTHILL, M. J. Displacement thickness. Journal of Fluid Mechanics, 4, 383–392 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Ahmed, J., Sultana, F. et al. Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact. Appl. Math. Mech.-Engl. Ed. 41, 1125–1138 (2020). https://doi.org/10.1007/s10483-020-2638-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2638-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation