Skip to main content
Log in

Transversal effects of high order numerical schemes for compressible fluid flows

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Finite volume schemes for the two-dimensional (2D) wave system are taken to demonstrate the role of the genuine dimensionality of Lax-Wendroff flow solvers for compressible fluid flows. When the finite volume schemes are applied, the transversal variation relative to the computational cell interfaces is neglected, and only the normal numerical flux is used, thanks to the Gauss-Green formula. In order to offset such defects, the Lax-Wendroff flow solvers or the generalized Riemann problem (GRP) solvers are adopted by substituting the time evolution of flows into the spatial variation. The numerical results show that even with the same convergence rate, the error by the GRP2D solver is almost one ninth of that by the multistage Runge-Kutta (RK) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABGRALL, R. and SHU, C. W. Handbook of Numerical Methods for Hyperbolic Problems, Cam-bridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  2. COLELLA, P. Multidimensional upwind methods for hyperbolic conservation laws. Journal of Computational Physics, 87, 171–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. FEY, M. Multidimensional upwinding, I: the method of transport for solving the Euler equations. Journal of Computational Physics, 143, 159–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. LUKÁČOVÁ-MEDVID’OVÁ, M., MORTON, K., and WARNECKE, G. Evolution Galerkin methods for hyperbolic systems in two space dimensions. Mathematics of Computation of the American Mathematical Society, 69, 1355–1384 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. MANDAL, J. C. and DESPHANDE, S. M. Higher order accurate kinetic flux vector splitting method for Euler equations. Notes on Numerical Fluid Mechanics, Vieweg+Teubner Verlag, New York (1989)

    Book  Google Scholar 

  6. MANDAL, J. C. and DESPHANDE, S. M. Kinetic flux vector splitting for Euler equations. Computers and Fluids, 23, 447–478 at(1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. XU, K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. Journal of Computational Physics, 171, 289–335 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. ROE, P. Multidimensional upwinding. Handbook of Numerical Analysis, Elsevier, Amsterdam (2017)

    Book  MATH  Google Scholar 

  9. STRANG, G. On the construction and comparison of difference schemes. SIAM Journal on Nu-merical Analysis, 53, 506–517 (1998)

    MATH  Google Scholar 

  10. GOTTLIEB, S. and SHU, C. W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. WOODWARD, P. and COLELLA, P. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. JIANG, G. S. and SHU, C. W. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. BEN-ARTZI, M. and FALCOVITZ, J. Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  14. VAN LEER, B. Towards the ultimate conservative difference scheme, V: a second-order sequel to Godunov’s method. Journal of Computational Physics, 32, 101–136 (1979)

    Article  MATH  Google Scholar 

  15. FJORDHOLM, U. and MISHRA, S. Vorticity preserving finite volume schemes for the shallow water equations. SIAM Journal on Scientific Computing, 33, 588–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. LI, J., LUKáčOVá-MEDVID’OVá, M., and WARCKE, G. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete and Continuous Dynamical Systems-A, 9, 559–576 (2003)

    Article  MathSciNet  Google Scholar 

  17. LEE, C. New features of CS solitons and the formation of vortices. Physics Letters A, 247, 397–402 (1998)

    Article  Google Scholar 

  18. LEE, C. Possible universal transitional scenario in a flat plate boundary layer: measurement and visualization. Physics Letters E, 62, 3659–3671 (2000)

    Google Scholar 

  19. LEE, C. and FU, S. On the formation of the chain of ring-like vortices in a transitional boundary layer. Experiments in Fluids, 30, 354–357 (2003)

    Article  Google Scholar 

  20. LEE, C. and WU, J. Transition in wall-bounded flows. Applied Mechanics Reviews, 61, 030802 (2008)

    Article  MATH  Google Scholar 

  21. ZHANG, Y. C. and LI, C. Transition control of Mach 6.5 hypersonic flat plate boundary layer. Applied Mathematics and Mechanics (English Edition), 40(2), 283–292 (2019) https://doi.org/ 10.1007/s10483-019-2423-8

    Article  Google Scholar 

  22. CHEN, X., ZHU, Y., and LEE, C. Interactions between second mode and low-frequency waves in a hypersonic boundary layer. Journal of Fluid Mechanics, 820, 693–735 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. LEE, C., PENG, H., YUAN, H., WU, J., ZHOU, M., and HUSSAIN, F. Experimental studies of surface waves inside a cylindrical container. Journal of Fluid Mechanics, 677, 39–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. LEVEQUE, R. J. Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiequan Li.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11771054 and 91852207)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Li, J. Transversal effects of high order numerical schemes for compressible fluid flows. Appl. Math. Mech.-Engl. Ed. 40, 343–354 (2019). https://doi.org/10.1007/s10483-019-2444-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2444-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation