Skip to main content
Log in

Mixed finite element and differential quadrature method for free and forced vibration and buckling analysis of rectangular plates

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, S. C. and Cheung, Y. K. Flexural free vibrations of rectangular plates with complex support conditions. Journal of Sound and Vibration, 93(1), 81–94 (1984)

    Article  Google Scholar 

  2. Leipholz, H. H. E. On some developments in direct methods of the calculus of variations. Applied Mechanics Reviews, 40(10), 1379–1392 (1987)

    Article  Google Scholar 

  3. Zitnan, P. Vibration analysis of membranes and plates by a discrete least squares technique. Journal of Sound and Vibration, 195(4), 595–605 (1996)

    Article  Google Scholar 

  4. Belytschko, T., Lu, Y. Y., and Gu, L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37, 229–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bert, C. W., Kang, S. K., and Striz, A. G. Two new approximate methods for analyzing free vibration of structural components. American Institute of Aeronautics and Astronautics Journal, 26, 612–618 (1988)

    MATH  Google Scholar 

  6. Bert, C. W., Wang, X., and Striz, A. G. Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates. Computers and Structures, 48(3), 473–479 (1993)

    Article  Google Scholar 

  7. Du, H., Liew, K. M., and Lim, M. K. Generalized differential quadrature method for buckling analysis. Journal of Engineering Mechanics, 122, 95–100 (1996)

    Article  Google Scholar 

  8. Tang, Y. and Wang, X. Buckling of symmetrically laminated rectangular plates under parabolic edge compression. International Journal of Mechanical Sciences, 53, 91–97 (2011)

    Article  Google Scholar 

  9. Sakata, T., Takahashi, K., and Bhat, R. B. Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation. Journal of Sound and Vibration, 189(1), 89–101 (1996)

    Article  Google Scholar 

  10. Alipour, M. M., Shariyat, M., and Shaban, M. A semi-analytical solution for free vibration and modal stress analyses of circular plates resting on two-parameter elastic foundations. Journal of Solid Mechanics, 2(1), 63–78 (2010)

    Google Scholar 

  11. Wei, G. W., Zhao, Y. B., and Xiang, Y. The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. International Journal of Mechanical Sciences, 43, 1731–1746 (2001)

    Article  MATH  Google Scholar 

  12. Ng, C. H. W., Zhao, Y. B., and Wei, G. W. Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates. Computer Methods in Applied Mechanics and Engineering, 193, 2483–2506 (2004)

    Article  MATH  Google Scholar 

  13. Leissa, A. W. The free vibration of rectangular plates. Journal of Sound and Vibration, 31(3), 257–293 (1973)

    Article  MATH  Google Scholar 

  14. Young, D. Vibration of rectangular plates by the Ritz method. Journal of Applied Mechanics, 17, 448–453 (1950)

    MATH  Google Scholar 

  15. Bassily, S. F. and Dickinson, S. M. On the use of beam functions for problems of plates involving free edges. Journal of Applied Mechanics, 42, 858–864 (1975)

    Article  MATH  Google Scholar 

  16. Bhat, R. B. Natural frequencies of rectangular plates using characteristic orthogonal polynomials in the Rayleigh-Ritz method. Journal of Sound and Vibration, 102(4), 493–499 (1985)

    Article  Google Scholar 

  17. Liew, K. M. and Lam, K. Y. A set of orthogonal plate functions for vibration analysis of regular polygonal plates. Journal of Vibration and Acoustic, 113, 182–186 (1991)

    Article  Google Scholar 

  18. Reddy, J. N. An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill, New York (1993)

    Google Scholar 

  19. Zienkiewicz, O. C. and Taylor, R. L. The Finite Element Method, 5th ed., McGraw-Hill, New York (2000)

    MATH  Google Scholar 

  20. Bellman, R. and Casti, J. Differential quadrature and long term integration. Journal of Mathematical Analysis and Applications, 34, 235–238 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bert, C. W. and Malik, M. Differential quadrature method in computational mechanics: a review. Applied Mechanics Reviews, 49(1), 1–28 (1996)

    Article  Google Scholar 

  22. Shu, C. Differential Quadrature and Its Application in Engineering, Springer, New York (2000)

    Book  MATH  Google Scholar 

  23. Tanaka, M. and Chen, W. Coupling dual reciprocity BEM and differential quadrature method for time-dependent diffusion problems. Applied Mathematical Modeling, 25, 257–268 (2001)

    Article  MATH  Google Scholar 

  24. Fung, T. C. Stability and accuracy of differential quadrature method in solving dynamic problems. Computer Methods in Applied Mechanics and Engineering, 191, 1311–1331 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shu, C. and Yao, K. S. Block-marching in time with DQ discretization: an efficient method for time-dependent problems. Computer Methods in Applied Mechanics and Engineering, 191, 4587–4597 (2002)

    Article  MATH  Google Scholar 

  26. Eftekhari, S. A., Farid, M., and Khani, M. Dynamic analysis of laminated composite coated beams carrying multiple accelerating oscillators using a coupled finite element-differential quadrature method. Journal of Applied Mechanics, 76, 061001 (2009)

    Article  Google Scholar 

  27. Eftekhari, S. A. and Khani, M. A coupled finite element-differential quadrature element method and its accuracy for moving load problem. Applied Mathematical Modeling, 34, 228–237 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Khalili, S. M. R., Jafari, A. A., and Eftekhari, S. A. A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Composite Structures, 92(10), 2497–2511 (2010)

    Article  Google Scholar 

  29. Jafari, A. A. and Eftekhari, S. A. A new mixed finite element-differential quadrature formulation for forced vibration of beams carrying moving loads. Journal of Applied Mechanics, 78(1), 011020 (2011)

    Article  Google Scholar 

  30. Malik, M. and Bert, C. W. Implementing multiple boundary conditions in the DQ solution of higher-order PDEs: application to free vibration of plates. International Journal for Numerical Methods in Engineering, 39(7), 1237–1258 (1996)

    Article  MATH  Google Scholar 

  31. Shu, C. and Du, H. A generalized approach for implementing general boundary conditions in the GDQ free vibration analyses of plates. International Journal of Solids and Structures, 34, 837–846 (1997)

    Article  MATH  Google Scholar 

  32. Bert, C. W. and Malik, M. Semianalytical differential quadrature solution for free vibration analysis of rectangular plates. American Institute of Aeronautics and Astronautics Journal, 34(3), 601–666 (1996)

    MATH  Google Scholar 

  33. Bert, C. W. and Malik, M. Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi-analytical approach. Journal of Sound and Vibration, 190(1), 41–63 (1996)

    Article  Google Scholar 

  34. Malekzadeh, P., Karami, G., and Farid, M. A semi-analytical DQEM for free vibration analysis of thick plates with two opposite edges simply supported. Computer Methods in Applied Mechanics and Engineering, 193, 4781–4796 (2004)

    Article  MATH  Google Scholar 

  35. Yang, J. and Shen, H. S. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions. Composites: Part B, 34, 103–115 (2003)

    Article  Google Scholar 

  36. Malekzadeh, P. and Karami, G. A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Applied Mathematical Modeling, 32, 1381–1394 (2008)

    Article  MATH  Google Scholar 

  37. Wang, X., Gan, L., and Wang, Y. A differential quadrature analysis of vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. Journal of Sound and Vibration, 298(1–2), 420–431 (2006)

    Article  Google Scholar 

  38. Timoshenko, S. P. and Gere, J. M. Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York (1963)

    Google Scholar 

  39. Leissa, A. W. and Kang, J. H. Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. International Journal of Mechanical Sciences, 44, 1925–1945 (2002)

    Article  MATH  Google Scholar 

  40. Civalek, Ö., Korkmaz, A., and Demir, C. Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Advances in Engineering Software, 41(4), 557–560 (2010)

    Article  MATH  Google Scholar 

  41. Xiang, Y., Zhao, Y. B., and Wei, G. W. Levy solutions for vibration of multi-span rectangular plates. International Journal of Mechanical Sciences, 44, 1195–1218 (2002)

    Article  MATH  Google Scholar 

  42. Azimi, S., Hamilton, J. F., and Soedel, W. The receptance method applied to the free vibration of continuous rectangular plates. Journal of Sound and Vibration, 93(1), 9–29 (1984)

    Article  MATH  Google Scholar 

  43. Mizusawa, T. and Kajita, T. Vibration of continuous skew plates. Journal of Earthquake Engineering and Structural Dynamics, 12, 847–850 (1984)

    Article  Google Scholar 

  44. Kim, C. S. and Dickinson, S. M. The flexural vibration of line supported rectangular plate systems. Journal of Sound and Vibration, 114(1), 129–142 (1987)

    Article  MathSciNet  Google Scholar 

  45. Liew, K. M. and Lam, K. Y. Vibration analysis of multi-span plates having orthogonal straight edges. Journal of Sound and Vibration, 147(2), 225–264 (1991)

    Article  Google Scholar 

  46. Bathe, K. J. and Wilson, E. L. Numerical Methods in Finite Element Analysis, Prentic-Hall, Englewood Cliffs, New Jersey (1976)

    MATH  Google Scholar 

  47. Fryba, L. Vibration of Solids and Structures Under Moving Loads, 3rd ed., Thomas Telford Ltd., Czech Republic (1999)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Eftekhari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eftekhari, S.A., Jafari, A.A. Mixed finite element and differential quadrature method for free and forced vibration and buckling analysis of rectangular plates. Appl. Math. Mech.-Engl. Ed. 33, 81–98 (2012). https://doi.org/10.1007/s10483-012-1535-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1535-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation