Skip to main content
Log in

Generalized passivity-based chaos synchronization

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based controller is presented to make the synchronization error system not only passive but also asymptotically stable. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies for the Genesio-Tesi chaotic system and the Qi chaotic system are presented to demonstrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pecora, L. M. and Carroll, T. L. Synchronization in chaotic systems. Physical Review Letters 64, 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  2. Chen, G. and Dong, X. From Chaos to Order, World Scientific, Singapore (1998)

    MATH  Google Scholar 

  3. Wang, C. C. and Su, J. P. A new adaptive variable structure control for chaotic synchronization and secure communication. Chaos, Solitons and Fractals 20(5), 967–977 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ott, E., Grebogi, C., and Yorke, J. A. Controlling chaos. Physical Review Letters 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Park, J. H. Adaptive synchronization of a unified chaotic systems with an uncertain parameter. International Journal of Nonlinear Sciences and Numerical Simulation 6(2), 201–206 (2005)

    Google Scholar 

  6. Wang, Y., Guan, Z. H., and Wang, H. O. Feedback and adaptive control for the synchronization of Chen system via a single variable. Physics Letter A 312(1–2), 34–40 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Yang, X. S. and Chen, G. Some observer-based criteria for discrete-time generalized chaos synchronization. Chaos, Solitons and Fractals 13(6), 1303–1308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bai, E. and Lonngen, K. Synchronization of two Lorenz systems using active control. Chaos, Solitons and Fractals 8(1), 51–58 (1997)

    Article  MATH  Google Scholar 

  9. Bai, E. W. and Lonngren, K. E. Sequential synchronization of two Lorenz systems using active control. Chaos, Solitons and Fractals 11(7), 1041–1044 (2000)

    Article  MATH  Google Scholar 

  10. Kwon, O. M. and Park, J. H. LMI optimization approach to stabilization of time-delay chaotic systems. Chaos, Solitons and Fractals 23(2), 445–450 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wu, X. and Lu, J. Parameter identification and backstepping control of uncertain Lü system. Chaos, Solitons and Fractals 18(4), 721–729 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hu, J., Chen, S., and Chen, L. Adaptive control for anti-synchronization of Chua’s chaotic system. Physics Letter A 339(6), 455–460 (2005)

    Article  MATH  Google Scholar 

  13. Zhan, M., Wang, X., Gong, X., Wei, G., and Lai, C. Complete synchronization and generalized synchronization of one-way coupled time-delay systems. Physical Review E 68, 6208–6213 (2003)

    Article  Google Scholar 

  14. Willems, J. C. Dissipative dynamical systems, part I, general theory. Archive for Rational Mechanics and Analysis 45(5), 321–351 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wen, Y. Passive equivalence of chaos in Lorenz system. IEEE Transactions on Circuits and Systems I, Fundamental Theory and Applications 46(7), 876–878 (1999)

    Article  Google Scholar 

  16. Lorenz, E. N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  17. Kemih, K., Filali, S., Benslama, M., and Kimouche, M. Passivity-based control of chaotic Lü system. International Journal of Innovative Computing, Information and Control 2(2), 331–337 (2006)

    Google Scholar 

  18. Lü, J. and Chen, G. A new chaotic attractor coined. International Journal of Bifurcation and Chaos 12(3), 659–661 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wei, D. Q. and Luo, X. S. Passivity-based adaptive control of chaotic oscillations in power system. Chaos, Solitons and Fractals 31(3), 665–671 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, F. and Liu, C. Synchronization of unified chaotic system based on passive control. Physica D 225(1), 55–60 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lü, J., Chen, G., Cheng, D., and Celikovsky, S. Bridge the gap between the Lorenz system and the Chen system. International Journal of Bifurcation and Chaos 12(12), 2917–2926 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, F. Q. and Liu, C. X. Hyperchaos evolved from the Liu chaotic system. Chinese Physics 15(5), 963–968 (2006)

    Article  Google Scholar 

  23. Jiao, Z. Q. and An, L. J. Passive control and synchronization of hyperchaotic Chen system. Chinese Physics B 17(2), 492–497 (2008)

    Article  Google Scholar 

  24. Kemih, K. Control of nuclear spin generator system based on passive control. Chaos, Solitons and Fractals 41(4), 1897–1901 (2009)

    Article  Google Scholar 

  25. Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishinan, V. Linear Matrix Inequalities in Systems and Control Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

    Google Scholar 

  26. Byrnes, C. I., Isidori, A., and Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear system. IEEE Transactions on Automatic Control 36(11), 1228–1240 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu, C. X., Liu, T., Liu, L., and Liu, K. A new chaotic attractor. Chaos, Solitons and Fractals 22, 1031–1038 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Genesio, R. and Tesi, A. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531–548 (1992)

    Article  MATH  Google Scholar 

  29. Chen, A. M., Lu, J. A., and Lu, J. H. Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006)

    Article  Google Scholar 

  30. Rossler, O. E. An equation for hyperchaos. Physics Letter A 71(2–3), 155–157 (1979)

    Article  MathSciNet  Google Scholar 

  31. Ning, C. Z. and Haken, H. Multistabilities and anomalous switching in the Lorenz-Haken model. Physics Letter A 41(11), 6577–6580 (1990)

    Google Scholar 

  32. Kapitaniak, T. and Chua, L. O. Hyperchaotic attractors of unidirectionally-coupled Chua’s circuits. International Journal Bifurcation Chaos 4(2), 477–482 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M. LMI Control Toolbox, The Mathworks Inc., Natick (1995)

    Google Scholar 

  34. Lü, J. and Chen, G. Generating multiscroll chaotic attractors: theories, methods and applications. International Journal Bifurcation Chaos 16(4), 775–858 (2006)

    Article  MATH  Google Scholar 

  35. Qi, G., Chen, Z., Du, S., and Yuan, Z. On a four-dimensional chaotic system. Chaos, Solitons and Fractals 23(5), 1671–1682 (2005)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Ahn.

Additional information

Communicated by Li-qun CHEN

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, C.K. Generalized passivity-based chaos synchronization. Appl. Math. Mech.-Engl. Ed. 31, 1009–1018 (2010). https://doi.org/10.1007/s10483-010-1336-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-1336-6

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation