Skip to main content
Log in

Effects of slip condition on MHD stagnation-point flow over a power-law stretching sheet

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mooney, M. Explicit formulas for slip and fluidity. Journal of Rheology 2(2), 210–222 (1931)

    Article  MathSciNet  Google Scholar 

  2. Rao, I. J. and Rajagopal, K. R. The effect of the slip condition on the flow of fluids in a channel. Acta Mech. 135(3), 113–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Khaled, A. R. A. and Vafai, K. The effect of slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions. Int. J. Non-Linear Mech. 39(5), 795–804 (2004)

    Article  MATH  Google Scholar 

  4. Wang, C. Y. Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equations. Chem. Eng. Sci. 57(17), 3745–3747 (2002)

    Article  Google Scholar 

  5. Wang, C. Y. Stagnation slip flow and heat transfer on a moving plate. Chem. Eng. Sci. 61(23), 7668–7672 (2006)

    Article  Google Scholar 

  6. Hayat, T., Masood, K., and Ayub, M. The effect of the slip condition on flows of an Oldroyd 6-constant fluid. J. Comput. Appl. Math. 202(2), 402–413 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chaudnary, R. C., Jiha, A. K., and Hang, F. Effects of chemical reaction on MHD micropolar fluid flow past a vertical plate in slip-flow regime. Applied Mathematics and Mechanics (English Edition) 29(9), 1179–1194 (2008) DOI 10.1007/s10483-008-0907-x

    Article  Google Scholar 

  8. Andersson, H. I. and Rousselet, M. Slip flow over a lubricated rotating disk. Int. J. Heat Fluid Flow 27(2), 329–335 (2006)

    Article  Google Scholar 

  9. Labropulu, F. and Li, D. Stagnation-point flow of a second-grade fluid with slip. Int. J. Non-Linear Mech. 43(9), 941–947 (2008)

    Article  Google Scholar 

  10. Zhu, J., Zheng, L. C., and Zhang, X. X. Analytic solution to stagnation-point flow and heat transfer over a stretching sheet based on homotopy analysis. Applied Mathematics and Mechanics (English Edition) 30(4), 463–474 (2009) DOI 10.1007/s10483-009-0407-2

    Article  MATH  MathSciNet  Google Scholar 

  11. Mo, J. Q. Singular perturbation for the weakly nonlinear reaction diffusion equation with boundary perturbation. Applied Mathematics and Mechanics (English Edition) 29(8), 1105–1110 (2008) DOI 10.1007/s10483-008-0814-x

    Article  MATH  MathSciNet  Google Scholar 

  12. Lin, S. R. and Mo, J. Q. Nonlinear singularly perturbed problems of ultra parabolic equations. Applied Mathematics and Mechanics (English Edition) 29(10), 1377–1381 (2008) DOI 10.1007/s10483-008-1012-z

    Article  MATH  MathSciNet  Google Scholar 

  13. Su, X. H., Zheng, L. C., and Zhang, X. X. Analytical approximate solutions and the approximate value of skin friction coefficient for the boundary layer of power law fluids. Applied Mathematics and Mechanics (English Edition) 29(9), 1215–1220 (2008) DOI 10.1007/s10483-008-0910-4

    Article  MATH  MathSciNet  Google Scholar 

  14. Liang, Z. F. and Tang, X. F. Analytical solution of a fractionally damped beam by Adomian decomposition method. Applied Mathematics and Mechanics (English Edition) 28(2), 219–228 (2007) DOI 10.1007/s10483-007-0210-z

    Article  MATH  Google Scholar 

  15. Zhang, S. Y. and Liu, Z. F. Three kinds of nonlinear dispersive waves in finite deformation elastic rods. Applied Mathematics and Mechanics (English Edition) 29(7), 909–917 (2008) DOI 10.1007/s10483-008-0709-2

    Article  MATH  MathSciNet  Google Scholar 

  16. Liao, S. J. Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman Hall/CRC, Boca Raton (2003)

    Google Scholar 

  17. Liao, S. J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499–513 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hayat, T., Abbas, Z., and Sajid, M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys. Lett. A 358(6), 396–403 (2006)

    Article  MATH  Google Scholar 

  19. Xu, H. and Liao, S. J. Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate. J. Non-Newtonian Fluid Mech. 129(1), 46–55 (2005)

    Article  Google Scholar 

  20. Tan, Y., Xu, H., and Liao, S. J. Explicit series solution of travelling waves with a front of fisher equation. Chaos, Solitons & Fractals 31(26), 462–472 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liao, S. J. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications Nonlinear Science and Numerical Simulation 15(8), 2003–2016 (2009) DOI 10.1016/j.cnsns.2009.09.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-cun Zheng  (郑连存).

Additional information

Communicated by Zhe-wei ZHOU

Project supported by the National Natural Science Foundation of China (No. 50936003), the Open Project of State Key Laboratory for Advanced Metals and Materials and the Research Foundation of Engineering Research Institute of University of Science and Technology Beijing (No. 2009Z-02)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Zheng, Lc. & Zhang, Zg. Effects of slip condition on MHD stagnation-point flow over a power-law stretching sheet. Appl. Math. Mech.-Engl. Ed. 31, 439–448 (2010). https://doi.org/10.1007/s10483-010-0404-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-0404-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation