Skip to main content
Log in

Lie group analysis for the effect of temperature-dependent fluid viscosity and thermophoresis particle deposition on free convective heat and mass transfer under variable stream conditions

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper examines a steady two-dimensional flow of incompressible fluid over a vertical stretching sheet. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the transformation parameters. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases but the temperature increases with the decreasing viscosity. The impact of the thermophoresis particle deposition plays an important role in the concentration boundary layer. The obtained results are presented graphically and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oberlack, M. Similarity in non-rotating and rotating turbulent pipe flows. J. Fluid Mech. 379(1), 1–22 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bluman, G. W. and Kumei, S. Symmetries and Differential Equations, Springer-Verlag, New York (1989)

    MATH  Google Scholar 

  3. Pakdemirli, M. and Yurusoy, M. Similarity transformations for partial differential equations. SIAM Rev. 40(1), 96–101 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crane, L. J. Flow past a stretching plate. Z. Angew. Math. Phys. 21(4), 645–647 (1970)

    Article  Google Scholar 

  5. Sakiadis, B. C. Boundary-layer behavior on continuous solid surface: I. the boundary-layer equations for two dimensional and asymmetric flow. AIChE J. 7(2), 26–28 (1961)

    Article  Google Scholar 

  6. Sakiadis, B. C. Boundary-layer behavior on continuous solid surface: II. the boundary-layer on a continuous flat surface. AIChE J. 7(2), 221–225 (1961)

    Article  Google Scholar 

  7. Gupta, P. S. and Gupta, A. S. Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Eng. 55(6), 744–746 (1977)

    Article  Google Scholar 

  8. Abel, M. S., Khan, S. K., and Prasad, K. V. Study of visco-elastic fluid flow and heat transfer over a stretching sheet with variable viscosity. Int. J. Non-Linear Mech. 37(1), 81–88 (2002)

    Article  MATH  Google Scholar 

  9. Epstein, M., Hauser, G. M., and Henry, R. E. Thermophoretic deposition of particles in natural convection flow from vertical plate. ASME J. Heat Trans. 107(2), 272–276 (1985)

    Article  Google Scholar 

  10. Goren, S. L. Thermophoresis of aerosol particles in laminar boundary layer on a flat plate. J. Colloid Interface Sci. 61(1), 77–85 (1977)

    Article  Google Scholar 

  11. Garg, V. K. and Jayaraj, S. Thermophoresis of aerosol particles in laminar flow over inclined plates. Int. J. Heat Mass Trans. 31(4), 875–890 (1988)

    Article  Google Scholar 

  12. Jayaraj, S., Dinesh, K. K., and Pillai, K. L. Thermophoresis in natural convection with variable properties. Heat Mass Trans. 34(6), 469–475 (1999)

    Article  Google Scholar 

  13. Selim, A., Hossain, M. A., and Rees, D. A. S. The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis. Int. J. Therm. Sci. 42(6), 973–981 (2003)

    Article  Google Scholar 

  14. Wang, C. C. Combined effects of inertia and thermophoresis on particle deposition onto a wafer with wavy surface. Int. J. Heat Mass Trans. 49(7–8), 1395–1402 (2006)

    Article  Google Scholar 

  15. Wang, C. C. and Chen, C. K. Thermophoresis deposition of particles from a boundary layer flow onto a continuously moving wavy surface. Acta Mech. 181(1), 139–151 (2006)

    Article  MATH  Google Scholar 

  16. Chamka, A. and Pop, I. Effect of thermophoresis particle deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Comm. Heat Mass Trans. 31(3), 421–430 (2004)

    Article  Google Scholar 

  17. Chamka, A., Jaradat, M., and Pop, I. Thermophoresis free convection from a vertical cylinder embedded in a porous medium. Int. J. Appl. Mech. Eng. 9(4), 471–481 (2004)

    Google Scholar 

  18. Nield, D. A. and Bejan, A. Convection in Porous Media, 2nd Ed., Springer, New York (1999)

    MATH  Google Scholar 

  19. Ingham, D. and Pop, I. Transport Phenomena in Porous Media I, Pergamon, Oxford (1998)

    Google Scholar 

  20. Ingham, D. and Pop, I. Transport Phenomena in Porous Media II, Pergamon, Oxford (2002)

    MATH  Google Scholar 

  21. Chen, C. L. and Chan K. C. Combined effects of thermophoresis and electrophoresis on particle deposition onto a wavy surface disk. Int. J. Heat Mass Trans. 51(7), 2657–2664 (2008)

    Article  MATH  Google Scholar 

  22. Gary, J., Kassoy, D. R., Tadjeran, H., and Zebib, A. The effects of significant viscosity variation on convective heat transport in water saturated porous medium. J. Fluid Mech. 117(2), 233–241 (1982)

    Article  MATH  Google Scholar 

  23. Mehta, K. N. and Sood, S. Transient free convection flow with temperature-dependent viscosity in a fluid saturated porous medium. Int. J. Eng. Sci. 30(5), 1083–1087 (1992)

    Article  MATH  Google Scholar 

  24. Mukhopadhyay, S., Layek, G. C., and Samad, S. A. Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity. Int. J. Heat Mass Trans. 48(7), 4460–4466 (2005)

    Article  Google Scholar 

  25. Mukhopadhyay, S. and Layek, G. C. Effects of thermal radiation and variable fluid viscosity on free convective flow and heat transfer past a porous stretching surface. Int. J. Heat Mass Trans. 51(7), 2167–2178 (2008)

    Article  MATH  Google Scholar 

  26. Brewster, M. Q. Thermal Radiative Transfer Properties, John Wiley and Sons, New York (1992)

    Google Scholar 

  27. Batchelor, G. K. An Introduction to Fluid Dynamics, Cambridge University Press, London (1987)

    Google Scholar 

  28. Ling, J. X. and Dybbs, A. Forced Convection over a Flat Plate Submersed in a Porous Medium: Variable Viscosity Case, Paper 87-WA/HT-23, American Society of Mechanical Engineers, New York (1987)

    Google Scholar 

  29. Gill, S. A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proceedings of the Cambridge Philosophical Society 47(1), 96–108 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hossain, M. A., Khanafer, K., and Vafai, K. The effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate. Int. J. Therm. Sci. 40(2), 115–124 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Kandasamy.

Additional information

Communicated by Li-qun CHEN

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandasamy, R., Muhaimin, I. Lie group analysis for the effect of temperature-dependent fluid viscosity and thermophoresis particle deposition on free convective heat and mass transfer under variable stream conditions. Appl. Math. Mech.-Engl. Ed. 31, 317–328 (2010). https://doi.org/10.1007/s10483-010-0305-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-0305-6

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation