Skip to main content
Log in

Eventually vanished solutions of a forced Liénard system

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we aim to find eventually vanished solutions, a special class of bounded solutions which tend to 0 as t → ± ∞, to a Liénard system with a time-dependent force. Since it is not a Hamiltonian system with small perturbations, the well-known Melnikov method is not applicable to the determination of the existence of eventually vanished solutions. We use a sequence of periodically forced systems to approximate the considered system, and find their periodic solutions. Difficulties caused by the non-Hamiltonian form are overcome by applying the Schauder’s fixed point theorem. We show that the sequence of the periodic solutions has an accumulation giving an eventually vanished solution of the forced Liénard system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hahan, W. Stability of Motion, Springer-Verlag, Berlin and New York (1967)

    Google Scholar 

  2. Yoshizawa, T. Stability Theory by Liapunov’s Second Method, The mathematical Society of Japan, Takyo (1996)

    Google Scholar 

  3. Hale, J. K. Ordinary Differential Equations, 2nd Edition, Willey-Interscience, New York (1980)

    MATH  Google Scholar 

  4. Buica, A., Gasull, A., and Yang, J. The third order Melnikov function of a quadratic center under quadratic perturbations. J. Math. Anal. Appl. 331(1), 443–454 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Champneys, A. and Lord, G. Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem. Physica D 102(1–2), 101–124 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chow, S., Hale, J., and Mallet-Paret, J. An example of bifurcation to homoclinic orbits. J. Diff. Equ. 37(3), 351–371 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dumortier, F., Li, C., and Zhang, Z. Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops. J. Diff. Equ. 139(1), 146–193 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, C. and Rousseau, C. A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: the cusp of order 4. J. Diff. Equ. 79(1), 132–167 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhu, C. and Zhang, W. Computation of bifurcation manifolds of linearly independent homoclinic orbits. J. Diff. Equ. 245(7), 1975–1994 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mawhin, J. and Ward, J. Periodic solutions of second order forced Liénard differential equations at resonance. Arch. Math. 41(2), 337–351 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Omari, P., Villari, G., and Zanolin, F. Periodic solutions of Liénard differential equations with one-sided growth restriction. J. Diff. Equ. 67(2), 278–293 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Franks, J. Generalizations of the Poincaré-Birkhoff theorem. Ann. Math. 128(1), 139–151 (1988)

    Article  MathSciNet  Google Scholar 

  13. Jacobowitz, H. Periodic solutions of \( \ddot x \) + f(x, t) = 0 via Poincaré-Birkhoff theorem. J. Diff. Equ. 20(1), 37–52 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Andronov, A., Vitt, E., and Khaiken, S. Theory of Oscillators, Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  15. Guckenheimer, J. and Holmes, P. Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York (1983)

    Google Scholar 

  16. Rabinowitz, P. H. Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh 114A(1), 33–38 (1990)

    MathSciNet  Google Scholar 

  17. Ambrosetti, A. and Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(2), 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chow, S. and Hale, J. Methods of Bifurcation Theory, Springer, New York (1982)

    MATH  Google Scholar 

  19. Carrião, P. and Miyagaki, O. Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems. J. Math. Anal. Appl. 230(1), 157–172 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Szulkin, A. and Zou, W. Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187(1), 25–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Izydorek, M. and Janczewska, J. Homoclinic solutions for a class of the second order Hamiltonian systems. J. Diff. Equ. 219(2), 375–389 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Izydorek, M. and Janczewska, J. Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential. J. Math. Anal. Appl. 335(2), 1119–1127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tang, X. and Xiao, L. Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential. J. Math. Anal. Appl. 351(2), 586–594 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tang, X. and Xiao, L. Homoclinic solutions for a class of second-order Hamiltonian systems. J. Math. Anal. Appl. 354(2), 539–549 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zelati, V. C., Ekeland, I., and Séré, E. A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann. 288(1), 133–160 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sansone, G. and Conti, R. Nonlinear Differential Equations, Pergamon Press, New York (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-xin Zhang  (张永新).

Additional information

Communicated by Li-qun CHEN

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Yx. Eventually vanished solutions of a forced Liénard system. Appl. Math. Mech.-Engl. Ed. 30, 1335–1344 (2009). https://doi.org/10.1007/s10483-009-1013-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-009-1013-6

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation