Skip to main content
Log in

Discontinuous element pressure gradient stabilizations for compressible Navier-Stokes equations based on local projections

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation[R]. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

  2. Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Math Comp, 1989, 52:411–435.

    Article  MATH  MathSciNet  Google Scholar 

  3. Cockburn B, Lin S Y. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems[J]. J Comput Phys, 1989, 84:90–113.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn B, Shu C W. TVB Runge-Kutta discontinuous Galerkin methods for conservation laws V: multidimensional systems[J]. J Comput Phys, 1998, 144:199–224.

    Article  MathSciNet  Google Scholar 

  5. Arnold D N, Brezzi F, Cockburn B, Marini D. Unified analysis of discontinuous Galerkin methods for elliptic problem[J]. SIAM J Numer Anal, 2002, 39:1749–1779.

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezzi F, Manzini G, Marini D, Pietra P, Russo A. Discontinuous Galerkin approximation for elliptic problems[J]. Numerical Methods for Partial Differential Equations, 2000, 16:365–378.

    Article  MATH  MathSciNet  Google Scholar 

  7. Babuska I, Zlamal M. Noncomforming elements in the finite element method with penalty[J]. SIAM J Numer Anal, 1973, 10:863–875.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn B, Kanschat G, Schotzau, Schwab C. Local discontinuous Galerkin methods for the Stokes system[J]. SIAM J Numer Anal, 2002, 40:319–343.

    Article  MATH  MathSciNet  Google Scholar 

  9. Ye Xiu. Discontinuous stable elements for the incompressible flow[J]. Advances is Computational Mathematics, 2004, 20:333–345.

    Article  MATH  Google Scholar 

  10. Luo Yan, Feng Minfu. Discontinuous finite element methods for the Stokes equations[J]. Mathematica Numerica Sinica, 2006, 28:163–174 (in Chinese).

    MathSciNet  Google Scholar 

  11. Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. J Comput Phys, 1997, 131:267–279.

    Article  MATH  MathSciNet  Google Scholar 

  12. Bassi F, Rebay S. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[J]. Int J Numer Meth Fluids, 2002, 40:197–207.

    Article  MATH  Google Scholar 

  13. Girault V, Raviart P A. Finite element methods for Navier-Stokes equations[M]. Lecture Notes in Math, Vol 749, Berlin and New York: Spring-Verlag, 1981.

    Google Scholar 

  14. Hughes T J, Brooks A. A multidimensional upwind scheme with no crosswind diffusion[C]. In: Hughes T J (ed). Proceedings of the ASME Symposium on Finite Element Methods for Convection Dominated Flows, New York, 1979, 19–35.

  15. Johnson C. Streamline diffusion methods for problems in fluid mechanics[M]. In: Gallagher R H, Carey G F, Oden J T, Zienkiewicz O C (eds). Finite Element in Fluids, London, New York: John Wiley and Sons, 1986.

    Google Scholar 

  16. Brook A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J]. Comput Meth Appl Mech Engrg, 1982, 32:199–259.

    Article  Google Scholar 

  17. Hansbo P. A velocity-pressure streamline diffusion finte element method for incompressible Navier-Stokes eauations[J]. Comput Meth Appl Mech Engrg, 1990, 84:175–192.

    Article  MATH  MathSciNet  Google Scholar 

  18. Johnson C, Saranen J. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equationa[J]. Math Comp, 1986, 47:1–18.

    Article  MATH  MathSciNet  Google Scholar 

  19. Tabata M. On a conservative upwind finite element scheme for convective-diffusion equations[J]. RAIRO Anal Numer, 1981, 15:3–25.

    MATH  MathSciNet  Google Scholar 

  20. Franca L PandHughes T J. Two classes of mixed finite element methods[J]. Comput Meth Appl Mech Engrg, 1988, 69:89–129.

    Article  MATH  Google Scholar 

  21. Zhou Tianxiao, Feng Minfu. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equationas[J]. Math Comp, 1993, 60:531–543.

    Article  MATH  MathSciNet  Google Scholar 

  22. Bochev P, Dohrmann C, Gunzburger M. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J Numer Anal, 2006, 44:82–101.

    Article  MATH  MathSciNet  Google Scholar 

  23. Blasco J, Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J]. Comput Meth Appl Mech Engrg, 2000, 182:277–300.

    Article  MATH  MathSciNet  Google Scholar 

  24. Bruce Kellogg R, Liu Biyue. A finite element method for the compressible Stokes equation[J]. SIAM J Numer Anal, 1996, 33:780–788.

    Article  MATH  MathSciNet  Google Scholar 

  25. Bruce Rand Liu B. A penalized finite element method for a compressible Stokes system[J]. SIAM J Numer Anal, 1997, 34:1093–1105.

    Article  MathSciNet  Google Scholar 

  26. Lesaint P, Raviart P A. On a finite element method for solving the neutron transport equation[M]. In: Boor (ed). Mathematical Aspects of Finite Elements in Partial Differential Equations, New York: Academic Press, 1974, 89–145.

    Google Scholar 

  27. Braack M, Burman E. Local projection stabilization for the ossen problem and its interpretation as a variational multiscale method[J]. SIAM J Numer Anal, 2006, 43:2544–2566.

    MATH  MathSciNet  Google Scholar 

  28. Falk R S, Richter G R. Local error estimates for a finite element for hyperbolic and covectiondiffusion equations[J]. SIAM J Numer Anal, 1992, 29:730–754.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Min-fu  (冯民富).

Additional information

Communicated by LU Chuan-jing

Project supported by the Science and Technology Foundation of Sichuan Province (No. 05GG006-006-2) and the Research Fund for the Introducing Intelligence of University of Electronic Science and Technology of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Feng, Mf. Discontinuous element pressure gradient stabilizations for compressible Navier-Stokes equations based on local projections. Appl. Math. Mech.-Engl. Ed. 29, 171–183 (2008). https://doi.org/10.1007/s10483-008-0205-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0205-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation