Skip to main content
Log in

Heminiphilus faecis gen. nov., sp. nov., a member of the family Muribaculaceae, isolated from mouse faeces and emended description of the genus Muribaculum

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The novel strain AM35T was isolated from the faeces of C57BL/6 mice. These cells are strictly anaerobic, gram negative, oxidase negative, catalase positive, rod-shaped and non-motile. The strain produced creamy yellowish colonies on brain heart infusion (BHI) agar with hemin. Growth was investigated at 30–41 °C in the presence of 0.5–1.5% (w/v) NaCl at pH 6.5–8.5. Taxonomic analysis based on 16S rRNA gene sequencing revealed that strain AM35T is affiliated with the family Muribaculaceae and closely related to the genus Muribaculum. The genomic DNA G + C content of strain AM35T was 47.8 mol%. We detected the whole-cell sugars ribose and galactose; meso-2,6-diaminopimelic acid was absent. The major fatty acids (> 10%) were anteiso-C15:0 and iso-C15:0; the major polar lipid was phosphatidylethanolamine. The major respiratory quinones were MK-10 and MK-11. Based on our phylogenetic, phenotypic and chemotaxonomic analyses, strain AM35T represents a novel genus within the family Muribaculaceae, for which we propose the name Heminiphilus faecis gen. nov., sp. nov. The type strain of Heminiphilus faecis gen. nov., sp. nov. is AM35T (= KCTC 15907 T = DSM 110151 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

isDDH:

In silico DNA–DNA hybridization

ANI:

Average nucleotide identity.

RAST:

Rapid Annotation using Subsystem Technology

References

  • Bankevich A et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauerl C, Collado MC, Diaz Cuevas A, Vina J, Perez Martinez G (2018) Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan. Lett Appl Microbiol. 66:464–471. https://doi.org/10.1111/lam.12882

    Article  CAS  PubMed  Google Scholar 

  • Brettin T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang D-H et al (2016) Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon. Korea Antonie Van Leeuwenhoek 109:1433–1446

    Article  CAS  PubMed  Google Scholar 

  • Chaplin A, Efimov B, Khokhlova E, Kafarskaia L, Tupikin A, Kabilov M, Shkoporov A (2014) Draft genome sequence of Coprobacter fastidiosus NSB1T Genome announcements. 2

  • Darling AE, Jospin G, Lowe E, Matsen FA IV, Bik HM, Eisen JA (2014) PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2:e243

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans CC et al (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE 9:e92193. https://doi.org/10.1371/journal.pone.0092193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach Journal of molecular evolution 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416

    Article  Google Scholar 

  • Fujimoto S, Nakagami Y, Kojima F (2004) Optimal bacterial DNA isolation method using bead-beating technique Memoirs Kyushu Univ Dep Of Health Scis Of Medical Sch 3:33–38

    Google Scholar 

  • Garzetti D, Brugiroux S, Bunk B, Pukall R, McCoy KD, Macpherson AJ, Stecher B (2017) High-quality whole-genome sequences of the oligo-mouse-microbiota bacterial community Genome announcements. 5

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  • Hall TA BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, 1999. vol 41. [London]: Information Retrieval Ltd., c1979-c2000; 95–98

  • Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

    Article  CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences Journal of molecular evolution 16:111–120

    CAS  PubMed  Google Scholar 

  • Knowles SCL, Eccles RM, Baltrunaite L (2019) Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett 22:826–837. https://doi.org/10.1111/ele.13240

    Article  CAS  PubMed  Google Scholar 

  • Krych L, Nielsen DS, Hansen AK, Hansen CH (2015) Gut microbial markers are associated with diabetes onset, regulatory imbalance and IFN-gamma level in NOD mice. Gut Microbes. 6:101–109. https://doi.org/10.1080/19490976.2015.1011876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagkouvardos I et al (2019) Sequence and cultivation study of Muribaculaceae reveals novel species, host preference and functional potential of this yet undescribed family. Microbiome 7:28. https://doi.org/10.1186/s40168-019-0637-2

  • Lagkouvardos I et al (2016) The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 1:16131. https://doi.org/10.1038/nmicrobiol.2016.131

    Article  CAS  PubMed  Google Scholar 

  • Lee G-H, Rhee M-S, Chang D-H, Kwon KK, Bae KS, Yang S-H, Kim B-C (2014) Bacillus solimangrovi sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 64:1622–1628

  • Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  • Liu C et al (2020) The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria Nature communications 11:1–12

    CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions BMC bioinformatics 14:60

    PubMed  Google Scholar 

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era Molecular. Biology and Evolution. 37:1530–1534

    Article  CAS  Google Scholar 

  • Miyake S, Ding Y, Soh M, Low A, Seedorf H (2020a) Cultivation and description of Duncaniella dubosii sp. nov., Duncaniella freteri sp. nov. and emended description of the species Duncaniella muris. Int J Syst Evol Microbiol. 70:3105–3110. https://doi.org/10.1099/ijsem.0.004137

    Article  CAS  PubMed  Google Scholar 

  • Miyake S, Ding Y, Soh M, Low A, Seedorf H (2020b) Muribaculum gordoncarteri sp. nov., an anaerobic bacterium from the faeces of C57BL/6J mice. Int J Syst Evol Microbiol. 70:4725–4729. https://doi.org/10.1099/ijsem.0.004338

    Article  CAS  PubMed  Google Scholar 

  • Miyake S, Ding Y, Soh M, Seedorf H (2019) Complete genome sequence of Duncaniella muris Strain B8, isolated from the feces of C57/BL6 Mice. Microbiology resource announcements. 8:e00566-e519

    PubMed  PubMed Central  Google Scholar 

  • Morotomi M, Nagai F, Sakon H, Tanaka R (2008) Dialister succinatiphilus sp. nov and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:2716–2720

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M et al (2015) Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS One 10:e0134234. https://doi.org/10.1371/journal.pone.0134234

  • Ormerod KL et al. (2016) Genomic characterization of the uncultured Bacteroidales family S24–7 inhabiting the guts of homeothermic animals Microbiome. 4; 36 doi:https://doi.org/10.1186/s40168-016-0181-2

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates. single cells and metagenomes Genome research. 25; 1043–1055

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogier R et al (2017) Alteration of the intestinal microbiome characterizes preclinical inflammatory arthritis in mice and its modulation attenuates established arthritis Sci Rep 7:15613. https://doi.org/10.1038/s41598-017-15802-x

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakamoto M, Lan PTN, Benno Y (2007) Barnesiella viscericola gen. nov., sp. nov., a novel member of the family Porphyromonadaceae isolated from chicken caecum. Int J Syst Evol Microbiol 57:342–346

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications Bacteriological reviews 36:407

    CAS  PubMed  Google Scholar 

  • Seedorf H et al (2014) Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159:253–266. https://doi.org/10.1016/j.cell.2014.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shkoporov AN et al (2015) Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 65:4580–4588

    Article  CAS  PubMed  Google Scholar 

  • Shkoporov AN et al (2013) Coprobacter fastidiosus gen. nov., sp. nov., a novel member of the family Porphyromonadaceae isolated from infant faeces. Int J Syst Evol Microbiol 63:4181–4188

    Article  CAS  PubMed  Google Scholar 

  • Smith BJ, Miller RA, Ericsson AC, Harrison DE, Strong R, Schmidt TM (2018) Changes in the gut microbiota and fermentation products associated with enhanced longevity in acarbose-treated mice. BioRxiv. 311456

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic acids research. 22; 4673–4680

  • Tindall B (1990a) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

  • Tindall B (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  • Tropini C et al (2018) Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota. Cell 173(1742–1754):e1717. https://doi.org/10.1016/j.cell.2018.05.008

    Article  CAS  Google Scholar 

  • Wayne L et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464

    Article  Google Scholar 

  • Yarza P et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 12:635–645. https://doi.org/10.1038/nrmicro3330

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Research Foundation of Korea (NRF) (2015M3C9A4053394) and the KRIBB Research Initiative Program of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

BCK and ML established the main idea of the manuscript. JKP, MSR and DHC designed the experiments and performed data analysis. JKP and BCK wrote the manuscript. The review has been checked and revised by HJ, JS, BJK and SBK.

Corresponding authors

Correspondence to Mina Lee or Byoung-Chan Kim.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical statement

All animal experiments were approved by the Institutional Animal Use and Care Committee of the Korea Research Institute of Bioscience and Biotechnology (KRIBB-AEC-18114).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.K., Chang, DH., Rhee, MS. et al. Heminiphilus faecis gen. nov., sp. nov., a member of the family Muribaculaceae, isolated from mouse faeces and emended description of the genus Muribaculum. Antonie van Leeuwenhoek 114, 275–286 (2021). https://doi.org/10.1007/s10482-021-01521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01521-x

Keywords

Navigation