Skip to main content
Log in

Prokaryotic cytoskeletons: in situ and ex situ structures and cellular locations

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Cytoskeletons have long been perceived to be present only in eukaryotes. However, this notion changed drastically in the 1990s, with observations of cytoskeleton-like structures in several prokaryotes. Homologs of the main components of eukaryotic cytoskeletons, such as microtubules, microfilaments, and intermediate filaments, have been identified in bacteria and archaea. Tubulin homologs include filamenting temperature-sensitive mutant Z (FtsZ), bacterial tubulin A/B (BtubA/B), and tubulin/FtsZ-like protein (TubZ), whereas actin homologs comprise murein region B (MreB) and crenactin. Unlike other proteins, crescentin (CreS) is a homolog of intermediate filaments. Recent findings elucidated their localization, structural organization, and helical properties in prokaryotes, thus revising traditional models. FtsZ is involved in cell division, forming a bundle of overlapping filaments that cover the entire division plane. Cryogenic transmission electron microscopy identified tubular structures of BtubA/B that were not previously identified using conventional ultrathin plastic sections. TubZ generates two joint filaments to form a quadruplex structure. After a long debate, MreB, a cell shape determinant, was shown to form filament stretches that move circumferentially around rod-shaped bacteria. Initially characterized as single-stranded, crenactin was eventually identified as right-handed double-stranded helical filaments. CreS, another cell shape determinant, forms filament bundles located inside the inner membrane of the concave side of cells. These observations suggest that the use of in situ or ex situ microscopy in combination with structural analysis techniques will enable the elucidation and further understanding of the current models of prokaryotic cytoskeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amo T, Paje MLF, Inagaki A, Ezaki S, Atomi H, Imanaka T (2002) Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 1:113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115:705–713

    Article  CAS  PubMed  Google Scholar 

  • Aylett CHS, Wang Q, Michie KA, Amos LA, Löwe J (2010) Filament structure of bacterial tubulin homologue TubZ. Proc Natl Acad Sci USA 107:19766–19771

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagchi S, Tomenius H, Belova LM, Ausmees N (2008) Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol Micobiol 70:1037–1050

    CAS  Google Scholar 

  • Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Orlova A, Valegård K, Lindås A-C, Schröder GF, Egelman EH (2015) Archaeal actin from a hyperthermophile forms a single-stranded filament. Proc Natl Acad Sci USA 112:9340–9345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briegel A, Dias DP, Li Z, Jensen RB, Frangakis AS, Jensen GJ (2006) Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol Microbiol 62:5–14

    Article  CAS  PubMed  Google Scholar 

  • Briegel A, Oikonomou CM, Chang Y-W, Kjær A, Huang AN, Kim KW, Ghosal D, Nguyen HH, Kenney D, Loo RRO, Gunsalus RP, Jensen GJ (2017) Morphology of the archaellar motor and associated cytoplasmic cone in Thermococcus kodakaraensis. EMBO Rep 18:1660–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabeen MT, Jacobs-Wagner C (2010) The bacterial cytoskeleton. Annu Rev Genet 44:365–392

    Article  CAS  PubMed  Google Scholar 

  • Carballido-López R, Errington J (2003) A dynamic bacterial cytoskeleton. Trends Cell Biol 13:577–583

    Article  CAS  PubMed  Google Scholar 

  • Celler K, Koning RI, Koster AJ, van Wezel GP (2013) Multidimensional view of the bacterial cytoskeleton. J Bacteriol 195:1627–1636

    Article  PubMed  PubMed Central  Google Scholar 

  • Charbon G, Cabeen MT, Jacobs-Wagner C (2009) Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev 23:1131–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer P, Crossley R, Rothfield L (1992) The essential bacterial cell division protein FtsZ is a GTPase. Nature 359:254–256

    Article  PubMed  Google Scholar 

  • Doi M, Wachi M, Ishino F, Tomioka S, Ito M, Sakagami Y, Suzuki A, Matsuhashi M (1988) Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J Bacteriol 170:4619–4624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson HP (2017) The discovery of the prokaryotic cytoskeleton: 25th anniversary. Mol Biol Cell 28:357–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errington J (2015) Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 13:241–248

    Article  CAS  PubMed  Google Scholar 

  • Eun Y-J, Kapoor M, Hussain S, Garner EC (2015) Bacterial filament systems: toward understanding their emergent behavior and cellular functions. J Biol Chem 290:17181–17189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink G, Szewczak-Harris A, Löwe J (2016) The bacterial cytoskeleton. Cell 166:522

    Article  CAS  PubMed  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes-Pérez ME, Núñez-Ramírez R, Martín-González A, Juan-Rodríguez D, Llorca O, Moreno-Herrero F, Oliva M (2017) TubZ filament assembly dynamics requires the flexible C-terminal tail. Sci Rep 7:43342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita J, Maeda Y, Mizohata E, Inoue T, Kaul M, Parhi AK, LaVoie EJ, Pilch DS, Matsumura H (2017) Structural flexibility of an inhibitor overcomes drug resistance mutations in Staphylococcus aureus FtsZ. ACS Chem Biol 12:1947–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furutani M, Iida T, Yoshida T, Maruyama T (1998) Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J Biol Chem 273:28399–28407

    Article  CAS  PubMed  Google Scholar 

  • Gitai Z (2007) Diversification and specialization of the bacterial cytoskeleton. Curr Opin Cell Biol 19:5–12

    Article  CAS  PubMed  Google Scholar 

  • Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, Brown DR, Baker PJ, Barynin VV, Rice DW, Sedelnikova SE, Heal JR, Sheridan JM, Aiwale ST, Chauhan PK, Srivastava A, Taneja A, Collins I, Errington J, Czaplewski LG (2008) An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321:1673–1675

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K, Izore T, Renner LD, Holmes MJ, Sun Y, Bisson-Filho AW, Walker S, Amir A, Löwe J, Garner EC (2018) MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 7:e32471

    Article  PubMed  PubMed Central  Google Scholar 

  • Izoré T, Duman R, Kureisaite-Ciziene D, Löwe J (2014) Crenactin from Pyrobaculum calidifontis is closely related to actin in structure and forms steep helical filaments. FEBS Lett 588:776–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izoré T, Kureisaite-Ciziene D, McLaughlin SH, Löwe J (2016) Crenactin forms actin-like double helical filaments regulated by arcadin-2. eLife 5:e21600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen RA, Cusumano C, Fujioka A, Lim-Fong G, Patterson P, Pogliano J (2007) Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev 21:1340–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Trimble MJ, Brun YV, Jensen GJ (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Zhang H, Zhu N, Wang X, Han Y, Chen M, Jiang J, Si S (2018) Identification of TB-E12 as a novel FtsZ inhibitor with anti-tuberculosis activity. Tuberculosis 110:79–85

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Ehrhardt DW, Margolin W (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci USA 93:12998–13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino F, Raunser S (2016) The mother of all actins. eLife 5:e23354

    PubMed  Google Scholar 

  • Montababa E, Agard DA (2014) Bacterial tubulin TubZ-Bt transitions between a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis. Proc Natl Acad Sci USA 111:3407–3412

    Article  CAS  Google Scholar 

  • Mukherjee A, Dai K, Lutkenhaus J (1993) Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 90:1053–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilhofer M, Jensen GJ (2013) The bacterial cytoskeleton: more than twisted filaments. Curr Opin Cell Biol 25:125–133

    Article  CAS  PubMed  Google Scholar 

  • Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ (2011) Microtubules in Bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 9(12):e1001213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogliano J (2008) The bacterial cytoskeleton. Curr Opin Cell Biol 20:19–27

    Article  CAS  PubMed  Google Scholar 

  • RayChaudhuri D, Park JT (1992) Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359:251–254

    Article  CAS  PubMed  Google Scholar 

  • Salje J, van den Ent F, de Boer P, Löwe J (2011) Direct membrane binding by bacterial actin MreB. Mol Cell 43:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffner-Barbero C, Martín-Fontecha M, Chacón P, Andreu JM (2012) Targeting the assembly of bacterial cell division protein FtsZ with small molecules. ACS Chem Biol 7:269–277

    Article  CAS  PubMed  Google Scholar 

  • Shih Y-L, Rothfield L (2006) The bacterial cytoskeleton. Microbiol Mol Biol Rev 70:729–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza W (2012) Prokaryotic cells: structural organization of the cytoskeleton and organelles. Mem Inst Oswaldo Cruz 107:283–293

    Article  PubMed  Google Scholar 

  • Stokes NR, Baker N, Bennett JM, Berry J, Collins I, Czaplewski LG, Logan A, Macdonald R, MacLeod L, Peasley H, Mitchell JP, Nayal N, Yadav A, Srivastava A, Haydon DJ (2013) An improved small-molecule inhibitor of FtsZ with superior in vitro potency, drug-like properties, and in vivo efficacy. Antimicrob Agents Chemother 57:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swulius MT, Jensen GJ (2012) The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-terminal yellow fluorescent protein tag. J Bacteriol 194:6382–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swulius MT, Chen S, Ding HJ, Li Z, Briegel A, Pilhofer M, Tocheva EI, Lybarger SR, Johnson TL, Sandkvist M, Jensen GJ (2011) Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria. Biochem Biophys Res Commun 407:650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent JD, Kagawa HK, Yaoi T, Olle E, Zaluzec NJ (1997) Chaperonin filaments: the archaeal cytoskeleton? Proc Natl Acad Sci USA 94:5383–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent JD, Kagawa HK, Yaoi T (1998) The role of chaperonins in vivo: the next frontiers. Ann N Y Acad Sci 851:36–47

    Article  CAS  PubMed  Google Scholar 

  • Usui K, Ishii N, Kawarabayasi Y, Yohda M (2004) Expression and biochemical characterization of two small heat shock proteins from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7. Prot Sci 13:134–144

    Article  CAS  Google Scholar 

  • Van den Ent F, Izoré T, Bharat TAM, Johnson CM, Löwe J (2014) Bacterial actin MreB forms antiparalle double filaments. eLife 3:e02634

    Article  PubMed  PubMed Central  Google Scholar 

  • Vats P, Rothfield L (2007) Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle. Proc Natl Acad Sci USA 104:17795–17800

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagstaff J, Löwe J (2018) Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 16:187–201

    Article  CAS  PubMed  Google Scholar 

  • Wettstein G, Bellaye PS, Micheau O, Bonniaud P (2012) Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity?. Int J Biochem Cell Biol 44:1680–1686

    Article  CAS  PubMed  Google Scholar 

  • White CL, Gober JW (2012) MreB: pilot or passenger of cell wall synthesis?. Trends Microbiol 20:74–79

    Article  CAS  PubMed  Google Scholar 

  • Wintrebert P (1913) La rotation immédiate de l’oeuf pondu et la rotation d’activation chez Discoglossus pictus. Otth C R Soc Biol 106:439–442

    Google Scholar 

  • Yao Q, Jewett AI, Chang Y-W, Oikonomou CM, Beeby M, Lancu CV, Briegel A, Ghosal D, Jensen GJ (2017) Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis. EMBO J 36:1577–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaoi T, Kagawa H, Trent JD (1998) Chaperonin filaments: their formation and an evaluation of methods for studying them. Arch Biochem Biophys 356:55–62

    Article  CAS  PubMed  Google Scholar 

  • Zupan JR, Cameron TA, Anderson-Furgeson J, Zambryski PC (2013) Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 110:9060–9065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Woo Kim.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.W. Prokaryotic cytoskeletons: in situ and ex situ structures and cellular locations. Antonie van Leeuwenhoek 112, 145–157 (2019). https://doi.org/10.1007/s10482-018-1142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1142-5

Keywords

Navigation