Skip to main content

Advertisement

Log in

Assessing bat droppings and predatory bird pellets for vector-borne bacteria: molecular evidence of bat-associated Neorickettsia sp. in Europe

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In Europe, several species of bats, owls and kestrels exemplify highly urbanised, flying vertebrates, which may get close to humans or domestic animals. Bat droppings and bird pellets may have epidemiological, as well as diagnostic significance from the point of view of pathogens. In this work 221 bat faecal and 118 bird pellet samples were screened for a broad range of vector-borne bacteria using PCR-based methods. Rickettsia DNA was detected in 13 bat faecal DNA extracts, including the sequence of a rickettsial insect endosymbiont, a novel Rickettsia genotype and Rickettsia helvetica. Faecal samples of the pond bat (Myotis dasycneme) were positive for a Neorickettsia sp. and for haemoplasmas of the haemofelis group. In addition, two bird pellets (collected from a Long-eared Owl, Asio otus, and from a Common Kestrel, Falco tinnunculus) contained the DNA of a Rickettsia sp. and Anaplasma phagocytophilum, respectively. In both of these bird pellets the bones of Microtus arvalis were identified. All samples were negative for Borrelia burgdorferi s.l., Francisella tularensis, Coxiella burnetii and Chlamydiales. In conclusion, bats were shown to pass rickettsia and haemoplasma DNA in their faeces. Molecular evidence is provided for the presence of Neorickettsia sp. in bat faeces in Europe. In the evaluated regions bat faeces and owl/kestrel pellets do not appear to pose epidemiological risk from the point of view of F. tularensis, C. burnetii and Chlamydiales. Testing of bird pellets may provide an alternative approach to trapping for assessing the local occurrence of vector-borne bacteria in small mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Boretti FS, Perreten A, Meli ML, Cattori V, Willi B, Wengi N, Hornok S, Honegger H, Hegglin D, Woelfel R, Reusch CE, Lutz H, Hofmann-Lehmann R (2009) Molecular investigations of Rickettsia helvetica infection in dogs, foxes, humans, and Ixodes spp. ticks. Appl Environ Microbiol 75:3230–3237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnard D, Weaver H, Gillett A, Loader J, Flanagan C, Polkinghorne A (2017) Novel Chlamydiales genotypes identified in ticks from Australian wildlife. Parasites Vectors 10:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Courtney JW, Kostelnik LM, Zeidner NS, Massung RF (2004) Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol 42:3164–3168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekker JJA, Regelink JR, Janssen EA, Brinkmann R, Limpens HJGA (2013) Habitat use of female Geoffroy’s bats (Myotis emarginatus) at it’s two northernmost maternity roosts and the implications for their conservation. Lutra 56:111–120

    Google Scholar 

  • Dietrich M, Kearney T, Seamark EC, Markotter W (2017) The excreted microbiota of bats: evidence of niche specialisation based on multiple body habitats. FEMS Microbiol Lett 364(1):fnw284

    Article  PubMed  Google Scholar 

  • Frank R, Kuhn T, Werblow A, Liston A, Kochmann J, Klimpel S (2015) Parasite diversity of European Myotis species with special emphasis on Myotis myotis (Microchiroptera, Vespertilionidae) from a typical nursery roost. Parasites Vectors 8:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson KE, Rikihisa Y, Zhang C, Martin C (2005) Neorickettsia risticii is vertically transmitted in the trematode Acanthatrium oregonense and horizontally transmitted to bats. Environ Microbiol 7:203–212

    Article  PubMed  CAS  Google Scholar 

  • Greiman SE, Tkach VV, Pulis E, Fayton TJ, Curran SS (2014) Large scale screening of Digeneans for Neorickettsia endosymbionts using real-time PCR reveals new Neorickettsia genotypes, host associations and geographic records. PLoS ONE 9:e98453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greiman SE, Vaughan JA, Elmahy R, Adisakwattana P, Van Ha N, Fayton TJ, Khalil AI, Tkach VV (2017) Real-time PCR detection and phylogenetic relationships of Neorickettsia spp. in digeneans from Egypt, Philippines, Thailand, Vietnam and the United States. Parasitol Int 66:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Gyuranecz M, Dénes B, Hornok S, Kovács P, Horváth G, Jurkovich V, Varga T, Hajtós I, Szabó R, Magyar T, Vass N, Hofmann-Lehmann R, Erdélyi K, Bhide M, Dán Á (2012a) Prevalence of Coxiella burnetii in Hungary: screening of dairy cows, sheep, commercial milk samples, and ticks. Vector Borne Zoonotic Dis 12:650–653

    Article  PubMed  Google Scholar 

  • Gyuranecz M, Reiczigel J, Krisztalovics K, Monse L, Szabóné GK, Szilágyi A, Szépe B, Makrai L, Magyar T, Bhide M, Erdélyi K (2012b) Factors influencing emergence of tularemia, Hungary, 1984–2010. Emerg Infect Dis 18:1379–1381

    Article  PubMed  PubMed Central  Google Scholar 

  • Han BA, Schmidt JP, Bowden SE, Drake JM (2015) Rodent reservoirs of future zoonotic diseases. Proc Natl Acad Sci USA 112:7039–7044

    Article  PubMed  CAS  Google Scholar 

  • Hornok S, Földvári G, Elek V, Naranjo V, Farkas R, de la Fuente J (2008) Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood-sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). Vet Parasitol 154:354–359

    Article  PubMed  CAS  Google Scholar 

  • Hornok S, Kovács R, Meli ML, Kontschán J, Gönczi E, Gyuranecz M, Dán Á, Molnár V, Hofmann-Lehmann R (2012) First detection of bartonellae in a broad range of bat ectoparasites. Vet Microbiol 159:541–543

    Article  PubMed  CAS  Google Scholar 

  • Hornok S, Abichu G, Meli ML, Tánczos B, Sulyok KM, Gyuranecz M, Gönczi E, Farkas R, Hofmann-Lehmann R (2014) Influence of the biotope on the tick infestation of cattle and on the tick-borne pathogen repertoire of cattle ticks in Ethiopia. PLoS ONE 9:e106452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hornok S, Estók P, Kováts D, Flaisz B, Takács N, Szőke K, Krawczyk A, Kontschán J, Gyuranecz M, Fedák A, Farkas R, Haarsma A-J, Sprong H (2015a) Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera. Parasites Vectors 8:441

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornok S, Földvári G, Rigó K, Meli ML, Gönczi E, Répási A, Farkas R, Papp I, Kontschán J, Hofmann-Lehmann R (2015b) Synanthropic rodents and their ectoparasites as carriers of a novel haemoplasma and vector-borne, zoonotic pathogens indoors. Parasites Vectors 8:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornok S, Abichu G, Takács N, Gyuranecz M, Farkas R, Fernández De Mera IG, de la Fuente J (2016) Molecular screening for Anaplasmataceae in ticks and tsetse flies from Ethiopia. Acta Vet Hung 64:65–70

    Article  PubMed  CAS  Google Scholar 

  • Keita AK, Socolovschi C, Ahuka-Mundeke S, Ratmanov P, Butel C, Ayouba A, Inogwabini BI, Muyembe-Tamfum JJ, Mpoudi-Ngole E, Delaporte E, Peeters M, Fenollar F, Raoult D (2013) Molecular evidence for the presence of Rickettsia felis in the feces of wild-living African apes. PLoS ONE 8:e54679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klimpel S, Mehlhorn H (2014) Bats (Chiroptera) as vectors of diseases and parasites: facts and myths, 1st edn. Springer, Berlin, p 187

    Book  Google Scholar 

  • Kreizinger Z, Szeredi L, Bacsadi Á, Nemes C, Sugár L, Varga T, Sulyok KM, Szigeti A, Ács K, Tóbiás E, Borel N, Gyuranecz M (2015) Occurrence of Coxiella burnetii and Chlamydiales species in abortions of domestic ruminants and in wild ruminants in Hungary, Central Europe. J Vet Diagn Investig 27:206–210

    Article  CAS  Google Scholar 

  • Leulmi H, Aouadi A, Bitam I, Bessas A, Benakhla A, Raoult D, Parola P (2016) Detection of Bartonella tamiae, Coxiella burnetii and rickettsiae in arthropods and tissues from wild and domestic animals in northeastern Algeria. Parasites Vectors 9:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leutenegger CM, Pusterla N, Mislin CN, Weber R, Lutz H (1999) Molecular evidence of coinfection of ticks with Borrelia burgdorferi sensu lato and the human granulocytic Ehrlichiosis agent in Switzerland. J Clin Microbiol 37:3390–3391

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lienard J, Croxatto A, Aeby S, Jaton K, Posfay-Barbe K, Gervaix A, Greub G (2011) Development of a new Chlamydiales-specific real-time PCR and its application to respiratory clinical samples. J Clin Microbiol 49:2637–2642

    Article  PubMed  PubMed Central  Google Scholar 

  • Loftis AD, Reeves WK, Szumlas DE, Abbassy MM, Helmy IM, Moriarity JR, Dasch GA (2006) Rickettsial agents in Egyptian ticks collected from domestic animals. Exp Appl Acarol 40:67

    Article  PubMed  Google Scholar 

  • Mascarelli PE, Keel MK, Yabsley M, Last LA, Breitschwerdt EB, Maggi RG (2014) Hemotropic mycoplasmas in little brown bats (Myotis lucifugus). Parasites Vectors 7:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Milchev B, Gruychev G (2014) Breeding distribution and nest site diversity of Barn Owl (Tyto alba) in the context of restoration of agricultural sector in Central South Bulgaria. Ornis Hung 22:69–75

    Google Scholar 

  • Millán J, López-Roig M, Delicado V, Serra-Cobo J, Esperón F (2015) Widespread infection with hemotropic mycoplasmas in bats in Spain, including a hemoplasma closely related to “Candidatus Mycoplasma hemohominis”. Comp Immunol Microbiol Infect Dis 39:9–12

    Article  PubMed  Google Scholar 

  • Parola P, Roux V, Camicas JL, Baradji I, Brouqui P, Raoult D (2000) Detection of ehrlichiae in African ticks by polymerase chain reaction. Trans R Soc Trop Med Hyg 94:707–708

    Article  PubMed  CAS  Google Scholar 

  • Pusterla N, Leutenegger CM, Sigrist B, Chae J-S, Lutz H, Madigan JE (2000) Detection and quantitation of Ehrlichia risticii genomic DNA in infected horses and snails by real-time PCR. Vet Parasitol 90:129–135

    Article  PubMed  CAS  Google Scholar 

  • Pusterla N, Johnson EM, Chae JS, Madigan JE (2003) Digenetic trematodes, Acanthatrium sp. and Lecithodendrium sp., as vectors of Neorickettsia risticii, the agent of Potomac horse fever. J Helminthol 77:335–339

    Article  PubMed  CAS  Google Scholar 

  • Roux V, Rydkina E, Eremeeva M, Raoult D (1997) Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int J Syst Bacteriol 47:252–261

    Article  PubMed  CAS  Google Scholar 

  • Stenos J, Graves SR, Unsworth NB (2005) A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. Am J Trop Med Hyg 73:1083–1085

    Article  PubMed  CAS  Google Scholar 

  • Sumasgutner P, Nemeth E, Tebb G, Krenn HW, Gamauf A (2014) Hard times in the city—attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey. Front Zool 11:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitálková Z, Haruštiaková D, Mahríková L, Berthová L, Slovák M, Kocianová E, Kazimírová M (2015) Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia. Parasites Vectors 8:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Szekeres S, Coipan EC, Rigó K, Majoros G, Jahfari S, Sprong H, Földvári G (2015) Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasites Vectors 8:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor SD (2018) Neorickettsia risticii. In: Pusterla N, Higgins J (eds) Interpretation of equine laboratory diagnostics. Wiley, Hoboken, pp 177–185

    Google Scholar 

  • van der Kolk JH, Bernadina WE, Visser IJ (1991) Een paard seropositief ten opzichte van Ehrlichia risticii [A horse seropositive for Ehrlichia risticii in the Netherlands]. Tijdschr Diergeneeskd 116:69–72

    PubMed  Google Scholar 

  • Vaughan JA, Tkach VV, Greiman SE (2012) Neorickettsial endosymbionts of the Digenea: diversity, transmission and distribution. Adv Parasitol 79:253–297

    Article  PubMed  Google Scholar 

  • Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT (2014) Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg Infect Dis 20:960–967

    Article  PubMed  PubMed Central  Google Scholar 

  • Versage JL, Severin DD, Chu MC, Petersen JM (2003) Development of a Multitarget Real-Time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J Clin Microbiol 41:5492–5499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidor E, Bissuel G, Moreau Y, Madec J, Cadore J (1988) Serologie positive a Ehrlichia risticii chez une jument presentant un tableau d’ehrlichiose equine. Prat Vet Equine 20:5–10

    Google Scholar 

  • Willi B, Boretti FS, Meli ML, Bernasconi MV, Casati S, Hegglin D, Puorger M, Neimark H, Cattori V, Wengi N, Reusch CE, Lutz H, Hofmann-Lehmann R (2007) Real-time PCR investigation of potential vectors, reservoirs, and shedding patterns of feline hemotropic mycoplasmas. Appl Environ Microbiol 73:3798–3802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willi B, Meli ML, Lüthy R, Honegger H, Wengi N, Hoelzle LE, Reusch CE, Lutz H, Hofmann-Lehmann R (2009) Development and application of a universal hemoplasma screening assay based on the SYBR Green PCR Principle. J Clin Microbiol 47:4049–4054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The study was organised in the Framework of EurNegVec COST action TD1303. Molecular biology work was partially performed using the logistics of the Center for Clinical Studies at the Vetsuisse Faculty of the University of Zurich.

Funding

DNA extractions and molecular analysis of A. phagocytophilum were supported by OTKA 115854. MG and KMS were supported by the Momentum Programme (LP2012-22) of the Hungarian Academy of Sciences.

Data availability

The sequences generated during the current study are available in the GenBank Repository, under accession numbers KP862896 [N. risticii], MF347694 and MF347695 [Rickettsia spp.]. All other relevant data are contained in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Hornok.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Authorisation for bat capture was provided by the National Inspectorate for Environment, Nature and Water (No. 14/2138-7/2011). Bat banding licence numbers are TMF-14/32/2010 (DK) and 59/2003 (PE). Birds were not handled during the study, therefore no ethical approval was necessary for the collection of bird pellets (i.e., these were found exclusively in the resting sites of birds).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hornok, S., Szőke, K., Estók, P. et al. Assessing bat droppings and predatory bird pellets for vector-borne bacteria: molecular evidence of bat-associated Neorickettsia sp. in Europe. Antonie van Leeuwenhoek 111, 1707–1717 (2018). https://doi.org/10.1007/s10482-018-1043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1043-7

Keywords

Navigation