Skip to main content

Advertisement

Log in

The role of natural antimicrobial peptides during infection and chronic inflammation

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Natural antimicrobial peptides (AMPs), a family of small polypeptides that are produced by constitutive or inducible expression in organisms, are integral components of the host innate immune system. In addition to their broad-spectrum antibacterial activity, natural AMPs also have many biological activities against fungi, viruses and parasites. Natural AMPs exert multiple immunomodulatory roles that may predominate under physiological conditions where they lose their microbicidal properties in serum and tissue environments. Increased drug resistance among microorganisms is occurring far more quickly than the discovery of new antibiotics. Natural AMPs have shown promise as ‘next generation antibiotics’ due to their broad-spectrum curative effects, low toxicity, the fact that they are not residual in animals, and the low rates of resistance exhibited by many pathogens. Many types of synthetic AMPs are currently being tested in clinical trials for the prevention and treatment of various diseases such as chemotherapy-associated infections, diabetic foot ulcers, catheter-related infections, and other conditions. Here, we provide an overview of the types and functions of natural AMPs and their role in combating microorganisms and different infectious and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afacan NJ, Yeung AT, Pena OM, Hancock RE (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 18:807–819

    Article  CAS  PubMed  Google Scholar 

  • Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jornvall H (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854

    Article  CAS  PubMed  Google Scholar 

  • Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093

    CAS  PubMed  Google Scholar 

  • Akin H, Tahan G, Ture F, Eren F, Atug O, Tahan V, Hamzaoglu I, Imeryuz N, Tozun N, Hamzaoglu HO (2011) Association between bactericidal/permeability increasing protein (BPI) gene polymorphism (Lys216Glu) and inflammatory bowel disease. J Crohns Colitis 5:14–18

    Article  PubMed  Google Scholar 

  • Allen A, Snyder AK, Preuss M, Nielsen EE, Shah DM, Smith TJ (2008) Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227:331–339

    Article  CAS  PubMed  Google Scholar 

  • Ando K, Natori S (1988) Inhibitory effect of sarcotoxin IIA, an antibacterial protein of Sarcophaga peregrina, on growth of Escherichia coli. J Biochem 103:735–739

    Article  CAS  PubMed  Google Scholar 

  • Bachrach G, Chaushu G, Zigmond M, Yefenof E, Stabholz A, Shapira J, Merrick J, Chaushu S (2006) Salivary LL-37 secretion in individuals with Down syndrome is normal. J Dent Res 85:933–936

    Article  CAS  PubMed  Google Scholar 

  • Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 95:9541–9546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM (1999) Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 67:6084–6089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa PP, Del SR, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011:250349

    Google Scholar 

  • Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman A, MacLeod RJ, Lembessis P, Hu J, Esch F, Solomon S (1996) The isolation and characterization of a novel corticostatin/defensin-like peptide from the kidney. J Biol Chem 271:10654–10659

    Article  CAS  PubMed  Google Scholar 

  • Beisswenger C, Kandler K, Hess C, Garn H, Felgentreff K, Wegmann M, Renz H, Vogelmeier C, Bals R (2006) Allergic airway inflammation inhibits pulmonary antibacterial host defense. J Immunol 177:1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R (2009) Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J Pept Sci 15:595–600

    Article  CAS  PubMed  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  CAS  PubMed  Google Scholar 

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR (2012) The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19:3794–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD (2009) A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol 39:792–800

    Article  CAS  PubMed  Google Scholar 

  • Brown KL, Poon GF, Birkenhead D, Pena OM, Falsafi R, Dahlgren C, Karlsson A, Bylund J, Hancock RE, Johnson P (2011) Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol 186:5497–5505

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Ghosh S, Koley H, Mukhopadhyay AK, Ramamurthy T, Saha DR, Mukhopadhyay D, Roychowdhury S, Hamabata T, Takeda Y, Das S (2008) Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 10:2520–2537

    Article  CAS  PubMed  Google Scholar 

  • Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P (1996) Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J BIOL CHEM 271:21808–21813

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Niyonsaba F, Ushio H, Okuda D, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2005) Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40:123–132

    Article  CAS  PubMed  Google Scholar 

  • Chesnokova LS, Slepenkov SV, Witt SN (2004) The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK. FEBS Lett 565:65–69

    Article  CAS  PubMed  Google Scholar 

  • Chung WO, Dale BA (2004) Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 72:352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239–19245

    CAS  PubMed  Google Scholar 

  • Cogen AL, Walker SL, Roberts CH, Hagge DA, Neupane KD, Khadge S, Lockwood DN (2012) Human beta-defensin 3 is up-regulated in cutaneous leprosy type 1 reactions. PLoS Negl Trop Dis 6:e1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuthbertson BJ, Deterding LJ, Williams JG, Tomer KB, Etienne K, Blackshear PJ, Bullesbach EE, Gross PS (2008) Diversity in penaeidin antimicrobial peptide form and function. Dev Comp Immunol 32:167–181

    Article  CAS  PubMed  Google Scholar 

  • Dale BA, Tao R, Kimball JR, Jurevic RJ (2006) Oral antimicrobial peptides and biological control of caries. BMC Oral Health 6(Suppl 1):S13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Haar SF, Hiemstra PS, van Steenbergen MT, Everts V, Beertsen W (2006) Role of polymorphonuclear leukocyte-derived serine proteinases in defense against Actinobacillus actinomycetemcomitans. Infect Immun 74:5284–5291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Lucca AJ, Walsh TJ (1999) Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother 43:1–11

    PubMed  PubMed Central  Google Scholar 

  • Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA 88:3952–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dommisch H, Acil Y, Dunsche A, Winter J, Jepsen S (2005) Differential gene expression of human beta-defensins (hBD-1, -2, -3) in inflammatory gingival diseases. Oral Microbiol Immunol 20:186–190

    Article  CAS  PubMed  Google Scholar 

  • Elphick D, Liddell S, Mahida YR (2008) Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 172:702–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML (2003) Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clin Exp Immunol 131:90–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felgentreff K, Beisswenger C, Griese M, Gulder T, Bringmann G, Bals R (2006) The antimicrobial peptide cathelicidin interacts with airway mucus. Peptides 27:3100–3106

    Article  CAS  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325:1089–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Villasenor H, Canizalez-Roman A, Reyes-Lopez M, Nazmi K, de la Garza M, Zazueta-Beltran J, Leon-Sicairos N, Bolscher JG (2010) Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals 23:569–578

    Article  CAS  PubMed  Google Scholar 

  • Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, Wijmenga C, Baldassano RN, Barclay M, Bayless TM, Brand S, Buning C, Cohen A, Colombel JF, Cottone M, Stronati L, Denson T, De Vos M, D’Inca R, Dubinsky M, Edwards C, Florin T, Franchimont D, Gearry R, Glas J, Van Gossum A, Guthery SL, Halfvarson J, Verspaget HW, Hugot JP, Karban A, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, Mowat C, Newman W, Panes J, Phillips A, Proctor DD, Regueiro M, Russell R, Rutgeerts P, Sanderson J, Sans M, Seibold F, Steinhart AH, Stokkers PC, Torkvist L, Kullak-Ublick G, Wilson D, Walters T, Targan SR, Brant SR, Rioux JD, D’Amato M, Weersma RK, Kugathasan S, Griffiths AM, Mansfield JC, Vermeire S, Duerr RH, Silverberg MS, Satsangi J, Schreiber S, Cho JH, Annese V, Hakonarson H, Daly MJ, Parkes M (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimaki T, Hotta S, Mochizuki T, Ayabe T, Matsuno A, Takagi K, Nakagomi T, Tamura A (2005) Pituitary apoplexy as a consequence of lymphocytic adenohypophysitis in a pregnant woman: a case report. Neurol Res 27:399–402

    Article  PubMed  Google Scholar 

  • Fuse N, Hayashi Y, Fukata J, Tominaga T, Ebisui O, Satoh Y, Isohara T, Uno I, Imura H (1993) Purification and characterization of new anti-adrenocorticotropin rabbit neutrophil peptides (defensins). Eur J Biochem 216:653–659

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Olmedo F, Rodriguez-Palenzuela P, Molina A, Alamillo JM, Lopez-Solanilla E, Berrocal-Lobo M, Poza-Carrion C (2001) Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Lett 498:219–222

    Article  CAS  PubMed  Google Scholar 

  • Geddes K, Rubino SJ, Magalhaes JG, Streutker C, Le Bourhis L, Cho JH, Robertson SJ, Kim CJ, Kaul R, Philpott DJ, Girardin SE (2011) Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat Med 17:837–844

    Article  CAS  PubMed  Google Scholar 

  • Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Le G, Li Y (2005) Antibacterial spectrum of antibacterial peptides from Musca dommestica larvae and synergic interaction between the peptides and antibiotics. Acta Microbiol Sin 04:516–520

    Google Scholar 

  • Gorr SU (2000) Antimicrobial peptides of the oral cavity. Periodontol 51:152–180

    Article  Google Scholar 

  • Gracia A, Polewicz M, Halperin SA, Hancock RE, Potter AA, Babiuk LA, Gerdts V (2011) Antibody responses in adult and neonatal BALB/c mice to immunization with novel Bordetella pertussis vaccine formulations. VACCINE 29:1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Griffin S, Taggart CC, Greene CM, O’Neill S, McElvaney NG (2003) Neutrophil elastase up-regulates human beta-defensin-2 expression in human bronchial epithelial cells. FEBS Lett 546:233–236

    Article  CAS  PubMed  Google Scholar 

  • Groenink J, Walgreen-Weterings E, Nazmi K, Bolscher JG, Veerman EC, van Winkelhoff AJ, Nieuw AA (1999) Salivary lactoferrin and low-Mr mucin MG2 in Actinobacillus actinomycetemcomitans-associated periodontitis. J Clin Periodontol 26:269–275

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Rodriguez JJ, Ochoa-Zarzosa A, Lopez-Gomez R, Lopez-Meza JE (2015) Plant antimicrobial peptides as potential anticancer agents. Biomed Res Int 2015:735087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10:243–254

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Schroder JM, Glaser R (2013) The skin surface as antimicrobial barrier: present concepts and future outlooks. Exp Dermatol 22:1–5

    Article  CAS  PubMed  Google Scholar 

  • Hart TC, Hart PS, Michalec MD, Zhang Y, Marazita ML, Cooper M, Yassin OM, Nusier M, Walker S (2000) Localisation of a gene for prepubertal periodontitis to chromosome 11q14 and identification of a cathepsin C gene mutation. J Med Genet 37:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herr C, Beisswenger C, Hess C, Kandler K, Suttorp N, Welte T, Schroeder JM, Vogelmeier C (2009) Suppression of pulmonary innate host defence in smokers. Thorax 64:144–149

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka T, Nakazato M, Date Y, Ashitani J, Minematsu T, Chino N, Matsukura S (1998) Identification of human beta-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem Biophys Res Commun 249:943–947

    Article  CAS  PubMed  Google Scholar 

  • Hood JL, Jallouk AP, Campbell N, Ratner L, Wickline SA (2013) Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral Therapy 18:95–103

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Xu M, Hang B, Wang L, Wang Q, Chen J, Song T, Fu D, Wang Z, Wang S, Liu X (2011) Isolation and characterization of an antimicrobial peptide from bovine hemoglobin α-subunit. World J Microbiol Biotechnol 27:767–771

    Article  CAS  Google Scholar 

  • Huang Q, Fei J, Yu HJ, Gou YB, Huang XK (2014) Effects of human beta-defensin-3 on biofilm formationregulating genes dltB and icaA in Staphylococcus aureus. MOL MED REP 10:825–831

    Article  CAS  PubMed  Google Scholar 

  • Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, Suh HJ, Kang BR, Nam SH, Jeon JP, Kim I, Lee DG (2009) Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle Copris tripartitus. Int J Pept. doi:10.1155/2009/136284

    PubMed  PubMed Central  Google Scholar 

  • Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174:4901–4907

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga S, Kawabata S, Muta T (1998) New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem 123:1–15

    Article  CAS  PubMed  Google Scholar 

  • Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349

    Article  CAS  PubMed  Google Scholar 

  • Ji S, Hyun J, Park E, Lee BL, Kim KK, Choi Y (2007) Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res 42:410–419

    Article  CAS  PubMed  Google Scholar 

  • Johansson S, Gullbo J, Lindholm P, Ek B, Thunberg E, Samuelsson G, Larsson R, Bohlin L, Claeson P (2003) Small, novel proteins from the mistletoe Phoradendron tomentosum exhibit highly selective cytotoxicity to human breast cancer cells. Cell Mol Life Sci 60:165–175

    Article  CAS  PubMed  Google Scholar 

  • Kandler K, Shaykhiev R, Kleemann P, Klescz F, Lohoff M, Vogelmeier C, Bals R (2006) The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int Immunol 18:1729–1736

    Article  CAS  PubMed  Google Scholar 

  • Katchar K, Kelly CP, Keates S, O’Brien MJ, Keates AC (2007) MIP-3alpha neutralizing monoclonal antibody protects against TNBS-induced colonic injury and inflammation in mice. Am J Physiol: Gastrointest Liver Physiol 292:G1263–G1271

    Article  CAS  Google Scholar 

  • Kaushal A, Gupta K, van Hoek ML (2016) Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora. Biochem Biophys Res Commun 470:955–960

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Bouzari S, Ma C, Rosenberger CM, Bergstrom KS, Gibson DL, Steiner TS, Vallance BA (2008) Flagellin-dependent and -independent inflammatory responses following infection by enteropathogenic Escherichia coli and Citrobacter rodentium. Infect Immun 76:1410–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo L, Robinette DW, Noga EJ (1999) Callinectin, an antibacterial peptide from blue crab, Callinectes sapidus, hemocytes. Mar Biotechnol (NY) 1:44–51

    Article  CAS  Google Scholar 

  • Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS (2016) Oral antimicrobial peptides: types and role in the oral cavity. Saudi Pharm J 24:515–524

    Article  PubMed  Google Scholar 

  • Kocsis AK, Lakatos PL, Somogyvari F, Fuszek P, Papp J, Fischer S, Szamosi T, Lakatos L, Kovacs A, Hofner P, Mandi Y (2008) Association of beta-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand J Gastroenterol 43:299–307

    Article  CAS  PubMed  Google Scholar 

  • Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC, Law I, Ho S, Ichikawa R, Zhao D, Xu H, Gallo R, Dempsey P, Cheng G, Targan SR, Pothoulakis C (2011) Cathelicidin signaling via the Toll-like receptor protects against colitis in mice. Gastroenterology 141:1852–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovach MA, Ballinger MN, Newstead MW, Zeng X, Bhan U, Yu FS, Moore BB, Gallo RL, Standiford TJ (2012) Cathelicidin-related antimicrobial peptide is required for effective lung mucosal immunity in Gram-negative bacterial pneumonia. J Immunol 189:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krisanaprakornkit S, Kimball JR, Dale BA (2002) Regulation of human beta-defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways, but not the NF-kappaB transcription factor family. J IMMUNOL 168:316–324

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni R, Rampersaud R, Aguilar JL, Randis TM, Kreindler JL, Ratner AJ (2010) Cigarette smoke inhibits airway epithelial cell innate immune responses to bacteria. Infect Immun 78:2146–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569

    Article  CAS  PubMed  Google Scholar 

  • Langhorst J, Junge A, Rueffer A, Wehkamp J, Foell D, Michalsen A, Musial F, Dobos GJ (2009) Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol 104:404–410

    Article  CAS  PubMed  Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins–components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc PM, Yeretssian G, Rutherford N, Doiron K, Nadiri A, Zhu L, Green DR, Gruenheid S, Saleh M (2008) Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 3:146–157

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee DG (2015) Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J Microbiol Biotechnol 25:759–764

    Article  CAS  PubMed  Google Scholar 

  • Lee HM, Shin DM, Choi DK, Lee ZW, Kim KH, Yuk JM, Kim CD, Lee JH, Jo EK (2009) Innate immune responses to Mycobacterium ulcerans via toll-like receptors and dectin-1 in human keratinocytes. Cell Microbiol 11:678–692

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Andrew TJ, Taylor SW, Menzel LP, Waring AJ (2003) Natural peptide antibiotics from tunicates: structures, functions and potential uses. Integr Comp Biol 43:313–322

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94:14614–14619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SS, Gullbo J, Lindholm P, Larsson R, Thunberg E, Samuelsson G, Bohlin L, Claeson P (2002) Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. Biochem J 366:405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Haug T, Styrvold OB, Jorgensen TO, Stensvag K (2008) Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 32:1430–1440

    Article  CAS  PubMed  Google Scholar 

  • Li C, Haug T, Moe MK, Styrvold OB, Stensvag K (2010) Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 34:959–968

    Article  CAS  PubMed  Google Scholar 

  • Li SA, Lee WH, Zhang Y (2012a) Efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in mouse models. Antimicrob Agents Chemother 56:3309–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012b) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215

    Article  CAS  PubMed  Google Scholar 

  • Lin P, Wong JH, Ng TB (2009) A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci Rep 30:101–109

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Pi X, Xin Wang X (2016) Progress in studying antimicrobial peptides and intestinal health. Acta Microbiol Sin 56:1537–1543

    Google Scholar 

  • Loeza-Angeles H, Sagrero-Cisneros E, Lara-Zarate L, Villagomez-Gomez E, Lopez-Meza JE, Ochoa-Zarzosa A (2008) Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol Lett 30:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Lyrio EC, Campos-Souza IC, Correa LC, Lechuga GC, Vericimo M, Castro HC, Bourguignon SC, Corte-Real S, Ratcliffe N, Declercq W, Santos DO (2015) Interaction of Mycobacterium leprae with the HaCaT human keratinocyte cell line: new frontiers in the cellular immunology of leprosy. Exp Dermatol 24:536–542

    Article  CAS  PubMed  Google Scholar 

  • Ma W, She R, Jin H, Peng F, Hu Y (2005) Activity of antibacterial peptides extracted from pig small intestine against 11 strains of bacteria. Chin J Vet Med 01:3–7

    Google Scholar 

  • Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S, Senices M, Gill D, Dunussi-Joannopoulos K, Collins M, Nickerson-Nutter C, Fouser LA, Young DA (2008) IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 118:597–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manabe T, Kawasaki K (2017) D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci Rep 7:43384

    Article  PubMed  PubMed Central  Google Scholar 

  • Merkel D, Rist W, Seither P, Weith A, Lenter MC (2005) Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Proteomics 5:2972–2980

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Gauri SS, Mukhopadhyay SK, Chatterjee S, Das SS, Mandal SM, Dey S (2014) Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides 54:148–158

    Article  CAS  PubMed  Google Scholar 

  • Mitta G, Hubert F, Noel T, Roch P (1999) Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur J Biochem 265:71–78

    Article  CAS  PubMed  Google Scholar 

  • Mitta G, Hubert F, Dyrynda EA, Boudry P, Roch P (2000) Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev Comp Immunol 24:381–393

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takao T, Shimonishi Y (1989) Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J Biochem 106:663–668

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee M (2006) Medical emergency–challenges and needs of the hour. J Indian Med Assoc 104:219

    PubMed  Google Scholar 

  • Moser C, Weiner DJ, Lysenko E, Bals R, Weiser JN, Wilson JM (2002) beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 70:3068–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S (2005) Citrobacter rodentium of mice and man. Cell Microbiol 7:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Muniz LR, Knosp C, Yeretssian G (2012) Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol 3:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A (2016) Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 371:20150290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ngai PH, Ng TB (2004) A napin-like polypeptide from dwarf Chinese white cabbage seeds with translation-inhibitory, trypsin-inhibitory, and antibacterial activities. Peptides 25:171–176

    Article  CAS  PubMed  Google Scholar 

  • Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276:6483–6496

    Article  CAS  PubMed  Google Scholar 

  • Nijnik A, Hancock R (2009) Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg Health Threats J 2:e1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, Nagaoka I (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106:20–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    Article  CAS  PubMed  Google Scholar 

  • Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269

    Article  CAS  PubMed  Google Scholar 

  • O’Driscoll NH, Labovitiadi O, Cushnie TP, Matthews KH, Mercer DK, Lamb AJ (2013) Production and evaluation of an antimicrobial peptide-containing wafer formulation for topical application. Curr Microbiol 66:271–278

    Article  PubMed  CAS  Google Scholar 

  • Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Ong ZY, Wiradharma N, Yang YY (2014) Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 78:28–45. doi:10.1016/j.addr.2014.10.013

    Article  CAS  PubMed  Google Scholar 

  • Oono T, Huh WK, Shirafuji Y, Akiyama H, Iwatsuki K (2003) Localization of human beta-defensin-2 and human neutrophil peptides in superficial folliculitis. Br J Dermatol 148:188–191

    Article  CAS  PubMed  Google Scholar 

  • Osaki T, Omotezako M, Nagayama R, Hirata M, Iwanaga S, Kasahara J, Hattori J, Ito I, Sugiyama H, Kawabata S (1999) Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem 274:26172–26178

    Article  CAS  PubMed  Google Scholar 

  • Osama AOE, Song Q, Zheng L-Y, Yu Z-L, Zhang J-B (2014) Research advance on action mode and application of antimicrobial peptides from insects. Chem Bioeng 2014(03):1–4

  • Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M (2005) Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother 55:888–896

    Article  CAS  PubMed  Google Scholar 

  • Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI, Leonova YF, Tagaev AA, Krasnodembsky EG, Kokryakov VN (2004) Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 577:209–214

    Article  CAS  PubMed  Google Scholar 

  • Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED, Men’Shenin AV, Kokryakov VN (2006) Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun 348:514–523

    Article  CAS  PubMed  Google Scholar 

  • Pace E, Ferraro M, Minervini MI, Vitulo P, Pipitone L, Chiappara G, Siena L, Montalbano AM, Johnson M, Gjomarkaj M (2012) Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients. PLoS ONE 7:e33601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan W, Liu X, Ge F, Han J, Zheng T (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis grube and its partial characterization. J Biochem 135:297–304

    Article  CAS  PubMed  Google Scholar 

  • Peng B, Guo Z, Lu J (2012) The common methods and application prospect of the artificial synthetic antibacterial peptide. Chin J Antibiot 37:176–183

    CAS  Google Scholar 

  • Pletzer D, Hancock RE (2016) Antibiofilm peptides: potential as broad-spectrum agents. J Bacteriol 198:2572–2578. doi:10.1128/JB.00017-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pletzer D, Coleman SR, Hancock RE (2016) Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol 33:35–40. doi:10.1016/j.mib.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360:1144–1149

    Article  CAS  PubMed  Google Scholar 

  • Qiu T, Xie X, Shi Y, Peng Y, Shen Y, Chen Y, Lv Z, Nie Z (2015) Advances in research and development of insect antibacterial peptide. Pharm Biotechnol 22:545–548

    CAS  Google Scholar 

  • Reinholz M, Ruzicka T, Schauber J (2012) Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease. Ann Dermatol 24:126–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritonja A, Kopitar M, Jerala R, Turk V (1989) Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett 255:211–214

    Article  CAS  PubMed  Google Scholar 

  • Robert E, Lefevre T, Fillion M, Martial B, Dionne J, Auger M (2015) Mimicking and understanding the agglutination effect of the antimicrobial peptide thanatin using model phospholipid vesicles. Biochemistry-US 54:3932–3941

    Article  CAS  Google Scholar 

  • Rogan MP, Taggart CC, Greene CM, Murphy PG, O’Neill SJ, McElvaney NG (2004) Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis 190:1245–1253

    Article  CAS  PubMed  Google Scholar 

  • Ryu S, Song PI, Seo CH, Cheong H, Park Y (2014) Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci 15:8753–8772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiman L, Tabibi S, Starner TD, San GP, Winokur PL, Jia HP, McCray PJ, Tack BF (2001) Cathelicidin peptides inhibit multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob Agents Chemother 45:2838–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H, Hirata M, Iwanaga S (1995) A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J Biochem 117:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Sarig H, Livne L, Held-Kuznetsov V, Zaknoon F, Ivankin A, Gidalevitz D, Mor A (2010) A miniature mimic of host defense peptides with systemic antibacterial efficacy. FASEB J 24:1904–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauber J, Rieger D, Weiler F, Wehkamp J, Eck M, Fellermann K, Scheppach W, Gallo RL, Stange EF (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18:615–621

    Article  CAS  PubMed  Google Scholar 

  • Schinke S, Fellermann K, Herlyn K, Reichel PH, Fundke R, Stange EF, Gross WL, Schultz H (2004) Autoantibodies against the bactericidal/permeability-increasing protein from inflammatory bowel disease patients can impair the antibiotic activity of bactericidal/permeability-increasing protein. Inflamm Bowel Dis 10:763–770

    Article  PubMed  Google Scholar 

  • Scott MG, Yan H, Hancock RE (1999) Biological properties of structurally related alpha-helical cationic antimicrobial peptides. Infect Immun 67:2005–2009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler F, Lepper PM, Bals R, Beisswenger C (2014) Regulation and function of antimicrobial peptides in immunity and diseases of the lung. Protein Pept Lett 21:341–351

    Article  CAS  PubMed  Google Scholar 

  • Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1996) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 271:16430

    Article  PubMed  Google Scholar 

  • Seo JK, Crawford JM, Stone KL, Noga EJ (2005) Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem Biophys Res Commun 338:1998–2004

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Liu D, Li M, Jin F, Din M, Parnell LD, Lai CQ (2012) Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria. PLoS ONE 7:e47194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sher D, Fishman Y, Zhang M, Lebendiker M, Gaathon A, Mancheno JM, Zlotkin E (2005) Hydralysins, a new category of beta-pore-forming toxins in cnidaria. J Biol Chem 280:22847–22855

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga T, Takayenoki Y, Kawasaki S, Seki N, Muta T, Toh Y, Ito A, Iwanaga S (1993) Separation of large and small granules from horseshoe crab (Tachypleus tridentatus) hemocytes and characterization of their components. J Biochem 114:307–316

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Neto LM, Neves RC, Goncalves JC, Trentini MM, Mucury-Filho R, Smidt KS, Fensterseifer IC, Silva ON, Lima LD, Clissa PB, Vilela N, Guilhelmelli F, Silva LP, Rangel M, Kipnis A, Silva-Pereira I, Franco OL, Junqueira-Kipnis AP, Bocca AL, Mortari MR (2017) Evaluation of the antimicrobial activity of the mastoparan Polybia-MPII isolated from venom of the social wasp Pseudopolybia vespiceps testacea (Vespidae, Hymenoptera). Int J Antimicrob Agents 49:167–175

    Article  CAS  PubMed  Google Scholar 

  • Silverstein KA, Moskal WJ, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. PLANT J 51:262–280

    Article  CAS  PubMed  Google Scholar 

  • Simmons CP, Goncalves NS, Ghaem-Maghami M, Bajaj-Elliott M, Clare S, Neves B, Frankel G, Dougan G, MacDonald TT (2002) Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-gamma. J Immunol (Baltimore, Md. : 1950) 168:1804–1812

  • Smith VJ, Fernandes JM, Kemp GD, Hauton C (2008) Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans. Dev Comp Immunol 32:758–772

    Article  CAS  PubMed  Google Scholar 

  • Sperstad SV, Haug T, Blencke HM, Styrvold OB, Li C, Stensvag K (2011) Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 29:519–530

    Article  CAS  PubMed  Google Scholar 

  • Stensvag K, Haug T, Sperstad SV, Rekdal O, Indrevoll B, Styrvold OB (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32:275–285

    Article  CAS  PubMed  Google Scholar 

  • Strukelj B, Pungercar J, Kopitar G, Renko M, Lenarcic B, Berbic S, Turk V (1995) Molecular cloning and identification of a novel porcine cathelin-like antibacterial peptide precursor. Biol Chem Hoppe Seyler 376:507–510

    Article  CAS  PubMed  Google Scholar 

  • Su H, Lei Z, Guo Z, Li H, Li J, Zhao Y, Li L (2016) Advances in mammalian antimicrobial peptides. Shandong Anim Husb Vet Med 37:56–58

  • Swanson K, Gorodetsky S, Good L, Davis S, Musgrave D, Stelwagen K, Farr V, Molenaar A (2004) Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect Immun 72:7311–7314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Wang W (2011) Research and application of insect antimicrobial peptides. Guangdong Agric Sci 6:219–221

    Google Scholar 

  • Tanida T, Okamoto T, Okamoto A, Wang H, Hamada T, Ueta E, Osaki T (2003) Decreased excretion of antimicrobial proteins and peptides in saliva of patients with oral candidiasis. J Oral Pathol Med 32:586–594

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Jurevic RJ, Coulton KK, Tsutsui MT, Roberts MC, Kimball JR, Wells N, Berndt J, Dale BA (2005) Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother 49:3883–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarver AP, Clark DP, Diamond G, Russell JP, Erdjument-Bromage H, Tempst P, Cohen KS, Jones DE, Sweeney RW, Wines M, Hwang S, Bevins CL (1998) Enteric beta-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect Immun 66:1045–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tasiemski A, Vandenbulcke F, Mitta G, Lemoine J, Lefebvre C, Sautiere PE, Salzet M (2004) Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J Biol Chem 279:30973–30982

    Article  CAS  PubMed  Google Scholar 

  • Tasiemski A, Schikorski D, Le Marrec-Croq F, Pontoire-Van CC, Boidin-Wichlacz C, Sautiere PE (2007) Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol 31:749–762

    Article  CAS  PubMed  Google Scholar 

  • Twigg MS, Brockbank S, Lowry P, FitzGerald SP, Taggart C, Weldon S (2015) The role of serine proteases and antiproteases in the cystic fibrosis lung. Med Inflamm 2015:293053

    Article  CAS  Google Scholar 

  • Ulvatne H, Karoliussen S, Stiberg T, Rekdal O, Svendsen JS (2001) Short antibacterial peptides and erythromycin act synergically against Escherichia coli. J Antimicrob Chemother 48:203–208

    Article  CAS  PubMed  Google Scholar 

  • Uvell H, Engstrom Y (2007) A multilayered defense against infection: combinatorial control of insect immune genes. Trends Genet 23:342–349

    Article  CAS  PubMed  Google Scholar 

  • van den Bogaart G, Guzman JV, Mika JT, Poolman B (2008) On the mechanism of pore formation by melittin. J Biol Chem 283:33854–33857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70:3545–3570

    Article  PubMed  CAS  Google Scholar 

  • Vandamme D, Landuyt B, Luyten W, Schoofs L (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280:22–35

    Article  CAS  PubMed  Google Scholar 

  • Villani AC, Lemire M, Fortin G, Louis E, Silverberg MS, Collette C, Baba N, Libioulle C, Belaiche J, Bitton A, Gaudet D, Cohen A, Langelier D, Fortin PR, Wither JE, Sarfati M, Rutgeerts P, Rioux JD, Vermeire S, Hudson TJ, Franchimont D (2009) Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet 41:71–76

    Article  CAS  PubMed  Google Scholar 

  • Vordenbaumen S, Pilic D, Otte JM, Schmitz F, Schmidt-Choudhury A (2010) Defensin-mRNA expression in the upper gastrointestinal tract is modulated in children with celiac disease and Helicobacter pylori-positive gastritis. J Pediatr Gastroenterol Nutr 50:596–600

    Article  PubMed  CAS  Google Scholar 

  • Vorland LH, Osbakk SA, Perstolen T, Ulvatne H, Rekdal O, Svendsen JS, Gutteberg TJ (1999) Interference of the antimicrobial peptide lactoferricin B with the action of various antibiotics against Escherichia coli and Staphylococcus aureus. Scand J Infect Dis 31:173–177

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi H, Teraguchi S, Tamura Y (2002) Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol. Biosci Biotechnol Biochem 66:2161–2167

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2014a) Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 7:545–594

    Article  CAS  Google Scholar 

  • Wang Y (2014b) Antimicrobial peptides of animal origin: current situation and prospect. Chin J Anim Nutr 26:2934–2941

    CAS  Google Scholar 

  • Wang K, Yu R (2003) Isolation and purification of antibacteirial peptide (ABP) from rabibt sacculus rotundus and its antibacteiral activity study. Sci Technol Eng 02:151–155

    Google Scholar 

  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  CAS  PubMed  Google Scholar 

  • Wehkamp J, Harder J, Weichenthal M, Mueller O, Herrlinger KR, Fellermann K, Schroeder JM, Stange EF (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 9:215–223

    Article  PubMed  Google Scholar 

  • Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, Lima HJ, Fellermann K, Ganz T, Stange EF, Bevins CL (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102:18129–18134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen S, Liu H-R, Xu H, Li T, Xing X (2016) Research advances in the design of synthetic antimicrobial peptides with enhanced therapeutic potentials China. Biotechnology 36:89–98

    Google Scholar 

  • Westerhoff HV, Zasloff M, Rosner JL, Hendler RW, De Waal A, Vaz GA, Jongsma PM, Riethorst A, Juretic D (1995) Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem 228:257–264

    Article  CAS  PubMed  Google Scholar 

  • Willing BP, Vacharaksa A, Croxen M, Thanachayanont T, Finlay BB (2011) Altering host resistance to infections through microbial transplantation. PLoS ONE 6:e26988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    Article  CAS  PubMed  Google Scholar 

  • Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal MR (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright GD (2000) Resisting resistance: new chemical strategies for battling superbugs. Chem Biol 7:R127–R132

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Yang H, Shen Z, Wu G, Xi T (2014) Research advances in cationic antimicrobial peptides. Pharm Biotechnol 21:067–070

    CAS  Google Scholar 

  • Yanagi S, Ashitani J, Ishimoto H, Date Y, Mukae H, Chino N, Nakazato M (2005) Isolation of human beta-defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respir Res 6:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang De, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 58:978–989

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296

    Article  CAS  PubMed  Google Scholar 

  • Yeung AT, Gellatly SL, Hancock RE (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  CAS  PubMed  Google Scholar 

  • Yu FS, Cornicelli MD, Kovach MA, Newstead MW, Zeng X, Kumar A, Gao N, Yoon SG, Gallo RL, Standiford TJ (2010) Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. J IMMUNOL 185:1142–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Cherryholmes G, Chang F, Rose DM, Schraufstatter I, Shively JE (2009) Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur J Immunol 39:3181–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL (2015a) Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347:67–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Xu Y, Wang Q, Hang B, Sun Y, Wei X, Hu J (2015b) Potential of novel antimicrobial peptide P3 from bovine erythrocytes and its analogs to disrupt bacterial membranes in vitro and display activity against drug-resistant bacteria in a mouse model. Antimicrob Agents Chemother 59:2835–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Song L, Li C, Ni D, Wu L, Zhu L, Wang H, Xu W (2007) Molecular cloning, expression of a big defensin gene from bay scallop Argopecten irradians and the antimicrobial activity of its recombinant protein. Mol Immunol 44:360–368

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Lu LX, Tang YL (2010) Research and application progress of insect antimicrobial peptides on food industry. Int J Food Eng 6:61–64

    Google Scholar 

  • Zhu Q, Solomon S (1992) Isolation and mode of action of rabbit corticostatic (antiadrenocorticotropin) peptides. Endocrinology 130:1413–1423

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (No. 31672559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhe Hu.

Ethics declarations

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Likun Cheng is the co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Cheng, L., Zhang, S. et al. The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie van Leeuwenhoek 111, 5–26 (2018). https://doi.org/10.1007/s10482-017-0929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0929-0

Keywords

Navigation