Skip to main content
Log in

Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

An Erratum to this article was published on 11 January 2016

This article has been updated

Abstract

A novel strictly anaerobic strain, ALO17T, was isolated from mouse faeces and found to produce lactic acid as a major metabolic end product. The isolate was observed to be Gram-stain positive, non-motile, non-spore forming small rods, oxidase and catalase negative, and to form cream-coloured colonies on DSM 104 agar plates. The NaCl range for growth was determined to be 0–2 % (w/v). The isolate was found to grow optimally at 37 °C, with 0.5 % (w/v) NaCl and at pH 7. The cell wall hydrolysates were found to contain ribose as a major sugar. The genomic DNA G+C content was determined to be 52.3 mol%. A phylogenetic analysis of the 16S rRNA gene sequence revealed that Holdemanella biformis DSM 3989T, Faecalicoccus pleomorphus ATCC 29734T, Faecalitalea cylindroides ATCC 27803T, and Allobaculum stercoricanis DSM 13633T are closely related to the isolate (87.4, 87.3, 86.9 and 86.9 % sequence similarity), respectively. The major cellular fatty acids (>10 %) of the isolate were identified as C18:1 cis 9 FAME (36.9 %), C16:0 FAME (33.7 %) and C18:0 FAME (13.2 %). In contrast to the tested reference strains, C20:0 FAME (4.0 %) was detected only in strain ALO17T whilst C16:0 DMA was absent. The isolate also differed in its substrate oxidation profiles from the reference strains by being positive for d-melibiose and stachyose but negative for N-acetyl-d-galactosamine and 3-methyl-d-glucose. On the basis of polyphasic taxonomic evidence from this study, the isolate is concluded to belong to a novel genus within the family Erysipelothricaceae. We propose the name Faecalibaculum rodentium gen. nov., sp. nov. to accommodate strain ALO17T (=KCTC 15484T = JCM 30274T) as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 11 January 2016

    An erratum to this article has been published.

Abbreviations

FAME:

Fatty acid methyl ester

ALDE:

Aldehyde

DMA:

Dimethyl acetal

References

  • Bang BH, Rhee MS, Chang DH, Park DS, Kim BC (2015) Erysipelothrix larvae sp. nov., isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Antonie Van Leeuwenhoek 107:443–451

    Article  CAS  PubMed  Google Scholar 

  • Barnes EM, Impey CS, Stevens BJH, Peel JL (1997) Streptococcus pleomorphus sp. nov. : an anaerobic Streptococcus isolated mainly from the caeca of birds. J Gen Microbiol 102:45–53

    Article  Google Scholar 

  • Becker B, Lechevalier MP, Lechevalier HA (1965) Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 13:236–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benson D, Lipman DJ, Ostell J (1993) GenBank. Nucleic Acids Res 21:2963–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosshard PP, Zbinden R, Altwegg M (2002) Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. Int J Syst Evol Microbiol 52:1263–1266

    CAS  PubMed  Google Scholar 

  • Cato EP, Salmon CW, Holdeman LV (1974) Eubacterium cylindroides (Rocchi) Holdeman and Moore: emended description and designation of neotype strain. Int J Syst Bacteriol 24:256–259

    Article  Google Scholar 

  • Cho JC, Giovannoni SJ (2003) Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int J Syst Evol Microbiol 53:1031–1036

    Article  CAS  PubMed  Google Scholar 

  • De Maesschalck C, Van Immerseel F, Eeckhaut V, De Baere S, Cnockaert M, Croubels S, Haesebrouck F, Ducatelle R, Vandamme P et al (2014) Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. Int J Syst Evol Microbiol 64:3877–3884

    Article  PubMed  Google Scholar 

  • Downes J, Olsvik B, Hiom SJ, Spratt DA, Cheeseman SL, Olsen I, Weightman AJ, Wade WG (2000) Bulleidia extructa gen. nov., sp. nov., isolated from human oral cavities. Int J Syst Evol Microbiol 50:979–983

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fritz JV, Desai MS, Shah P, Schneider JG, Wilmes P (2013) From meta-omics to causality: experimental models for human microbiome research. Microbiome 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greetham HL, Gibson GR, Giffard C, Hippe H, Merkhoffer B, Steiner U, Falsen E, Collins MD (2004) Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. Anaerobe 10:301–307

    Article  CAS  PubMed  Google Scholar 

  • Greiner T, Bäckhed F (2011) Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22:117–123

    Article  CAS  PubMed  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  • Han I, Congeevaram S, Ki DW, Oh BT, Park J (2011) Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion. Appl Microbiol Biotechnol 89:835–842

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Benno Y (2000a) Catenibacterium mitsuokai gen. nov., sp. nov., a gram-positive anaerobic bacterium isolated from human faeces. Int J Syst Evol Microbiol 50(4):1595–1599

    Article  PubMed  Google Scholar 

  • Kageyama A, Benno Y (2000b) Coprobacillus catenaformis gen. nov., sp. nov., a new genus and species isolated from human feces. Microbiol Immunol 44:23–28

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Benno Y (2000c) Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solobacterium moorei Gen. Nov., Sp. Nov. Microbiol Immunol 44:223–227

    Article  CAS  PubMed  Google Scholar 

  • Kanno M, Katayama T, Morita N, Tamaki H, Hanada S, Kamagata Y (2015) Catenisphaera adipataccumulans gen. nov., sp. nov., a member of the family Erysipelotrichaceae isolated from an anaerobic digester. Int J Syst Evol Microbiol 65:805–810

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kostic AD, Howitt MR, Garrett WS (2013) Exploring host-microbiota interactions in animal models and humans. Genes Dev 27:701–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagier JC, Million M, Hugon P, Armougom F, Raoult D (2012) Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagier JC, Hugon P, Khelaifia S, Fournier PE, La Scola B, Raoult D (2015) The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 28:237–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE, Beiko RG (2014) Microbial shifts in the aging mouse gut. Microbiome 2:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Hwang BK (2002) Diversity of antifungal actinomycetes in various vegetative soils of Korea. Can J Microbiol 48:407–417

    Article  CAS  PubMed  Google Scholar 

  • Lee GH, Rhee MS, Chang DH, Lee J, Kim S, Yoon MH, Kim BC (2013a) Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63:1942–1946

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kumar S, Lee GH, Chang DH, Rhee MS, Yoon MH, Kim BC (2013b) Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63:4196–4201

    Article  CAS  PubMed  Google Scholar 

  • Lee GH, Rhee MS, Chang DH, Kwon KK, Bae KS, Yang SH, Kim BC (2014) Bacillus solimangrovi sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 64:1622–1628

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12:304–314

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, Jansson JK, Gordon JI, Knight R (2013) Meta-analyses of studies of the human microbiota. Genome Res 23:1704–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig W, Schleifer K-H, Whitman WB (2009) Class III. Erysipelotrichia class nov. In: Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, p 1298

    Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Ramasamy D, Lagier JC, Nguyen TT, Raoult D, Fournier PE (2013) Non contiguous-finished genome sequence and description of Dielma fastidiosa gen. nov., sp. nov., a new member of the family Erysipelotrichaceae. Stand Genomic Sci 8:336–351

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol 4:406–425

    CAS  Google Scholar 

  • Salvetti E, Felis GE, Dellaglio F, Castioni A, Torriani S, Lawson PA et al (2011) Reclassification of Lactobacillus catenaformis (Eggerth 1935) Moore and Holdeman 1970 and Lactobacillus vitulinus Sharpe et al 1973 as Eggerthia catenaformis gen. nov., comb. nov. and Kandleria vitulina gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 61:2520–2524

    Article  CAS  PubMed  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Article  Google Scholar 

  • Stackebrandt E (2009) Family 1. Erysipelotrichaceae. In: Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 1299–1317

    Google Scholar 

  • Takahashi T, Fujisawa T, Benno Y, Tamura Y, Sawada T, Suzuki S, Muramatsu M, Mitsuoka T (1987) Erysipelothrix tonsillarum sp. nov., isolated from tonsils of apparently healthy pigs. Int J Syst Bacteriol 37:166–168

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbarg S, Rheims H, Emus S, Frühling A, Kroppenstedt RM, Stackebrandt E, Schumann P (2004) Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov. Int J Syst Evol Microbiol 54:221–225

    Article  CAS  PubMed  Google Scholar 

  • Wade WG (2009) Genus I. Eubacterium Prévot 1938, 294AL. In: Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 865–891

    Google Scholar 

  • Willems A, Moore WE, Weiss N, Collins MD (1997) Phenotypic and phylogenetic characterization of some Eubacterium-like isolates containing a novel type B wall murein from human feces: description of Holdemania filiformis gen. nov., sp. nov. Int J Syst Bacteriol 47:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

    Article  CAS  PubMed  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zillig W, Holz I, Janekovic D, Klenk H-P, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Program for Agricultural Science & Technology Development (Project No. PJ010168) and was partially supported by grants from the National Research Foundation of Korea (NRF) (2008-2004721 & NRF-2013M3A9A5076601), the KRIBB Research Initiative Programs (KGS4121551) and by a grant from of the Korea Health Technology R&D Project (HI14C0368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Chan Kim.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10482-016-0648-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, DH., Rhee, MS., Ahn, S. et al. Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse. Antonie van Leeuwenhoek 108, 1309–1318 (2015). https://doi.org/10.1007/s10482-015-0583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0583-3

Keywords

Navigation