Skip to main content
Log in

Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Phenotypic and genotypic changes in Aspergillus niger and Penicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation of A. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stained A. niger and P. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased in P. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integrity gfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi, A. niger and P. chrysogenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad I, Khan MSA (2012) Microscopy in mycological research with especial reference to ultrastructures and biofilm studies. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology. Formatex Research Center, Spain, pp 646–659

    Google Scholar 

  • Altenburg SD, Nielsen-Peiss SM, Hyman LE (2008) Increased filamentous growth of Candida albicans in simulated microgravity. Genomics Proteomics Bioinform 6:42–50

    Article  Google Scholar 

  • Arunasri K, Adil M, Charan KV, Suvro C, Reddy SH et al (2013) Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One 8:e57860

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohle K, Jungeblouda A, Gocke Y, Dalpiaza Y (2007) Selection of reference genes for normalization of specific gene quantification data of Aspergillus niger. J Biotechnol 132:353–358

    Article  CAS  PubMed  Google Scholar 

  • Czymmek KJ, Whallon JH, Klomparens KL (1994) Confocal microscopy in mycological research. Exp Mycol 18:275–293

    Article  Google Scholar 

  • Francis KO, Cockell CS (2010) Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 80:1–13

    Article  Google Scholar 

  • Gomoiu I, Chatzitheodoridis E, Vadrucci S, Walther I (2013) The effect of spaceflight on growth of Ulocladium chartarum colonies on the international space station. PLoS One 8:e62130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez-Rodriguez Y, Hasting S, Momany M (2012) The septin aspB in Aspergillus nidulans forms bars and filaments and plays roles in growth emergence and condition. Eukaryot Cell 11:311–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johanson K, Allen PL, Lewis F, Cubano LS, Hyman LE, Hammond TG (2002) Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture. J Appl Physiol 93:2171–2180

    PubMed  Google Scholar 

  • Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2004) Changes in neutrophil functions in astronauts. Brain Behav Immun 18:443–450

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19:547–554

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Singh KP, DuMond JW Jr (2009) Simulated microgravity decreases DNA repair capacity and induce DNA damage in human lymphocytes. J Cellular Biochem 107:723–731

    Article  CAS  Google Scholar 

  • Leys N, Baatout S, Rosier C, Dams A, Heeren C et al (2009) The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Van Leeuwenhoek 96:227–245

    Article  CAS  PubMed  Google Scholar 

  • Moore D, Hock B, Greening JP, Kern VD, Frazer LN, Monzerz J (1996) Gravimorphogenesis in agarics. Mycol Res 100:257–273

    Article  PubMed  Google Scholar 

  • Murray SL, Hynes MJ (2010) Metabolic and developmental effects resulting from deletion of the citA gene encoding citrate synthase in Aspergillus nidulans. Eukaryot Cell 9:656–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L et al (2000) Microgravity as a novel environmental signal affecting Salmonella entericca Serovar Typhimurium virulence. Infect Immun 68:3147–3152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL et al (2003) Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods 54:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nobel HD, Ende HV, Klis FM (2000) Cell wall maintenance in fungi. Trends Microbiol 8:344–345

    Article  PubMed  Google Scholar 

  • Purevdorj-Gage B, Sheehan KB, Hyman LE (2006) Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol 72:4569–4575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ram AF, Arentshorst M, Damveld RA, vanKuyk PA, Klis FM, van den Hondel CA (2004) The cell wall stress response in Aspergillus niger involves increased expression of the glutamine: fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology 150:3315–3326

    Article  CAS  PubMed  Google Scholar 

  • Van Mulders SE, Stassen C, Daenen L, Devreese B, Siweres V et al (2011) The influence of microgravity on invasive growth in Saccharomyes cerevisiae. Astrobiology 11:45–55

    Article  PubMed  Google Scholar 

  • Vesper SJ, Wong W, Kuo CM, Pierson DL (2008) Mold species in dust from the international space station identified and quantified by mold specific quantitative PCR. Res Microbiol 159:432–435

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, An L, Jiang Y, Hang H (2011) Effects of simulated microgravity on embryonic stem cells. PLoS One 6:e29214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao C, Sun Y, Yi ZC, Rong L, Zhuang FY, Fan YB (2010) Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts. Adv Space Res 46:701–706

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) Grant No. 1201002467 funded by the Korean Government. K. Rajagopal was supported by the Brain Pool Program funded by the Korean Federation of Science Technology Societies Grant by Korea Government (MEST, Basic Research Promotion Fund). Assistance by Ms. Eun-Jin Choi, Electron Microscopy Laboratory, Center for University Wide Research Facilities, Chonbuk National University for transmission electron microscopy is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathishkumar, Y., Velmurugan, N., Lee, H.M. et al. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum . Antonie van Leeuwenhoek 106, 197–209 (2014). https://doi.org/10.1007/s10482-014-0181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0181-9

Keywords

Navigation