Skip to main content
Log in

Tool for rapid annotation of microbial SNPs (TRAMS): a simple program for rapid annotation of genomic variation in prokaryotes

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Next generation sequencing (NGS) has been widely used to study genomic variation in a variety of prokaryotes. Single nucleotide polymorphisms (SNPs) resulting from genomic comparisons need to be annotated for their functional impact on the coding sequences. We have developed a program, TRAMS, for functional annotation of genomic SNPs which is available to download as a single file executable for WINDOWS users with limited computational experience and as a Python script for Mac OS and Linux users. TRAMS needs a tab delimited text file containing SNP locations, reference nucleotide and SNPs in variant strains along with a reference genome sequence in GenBank or EMBL format. SNPs are annotated as synonymous, nonsynonymous or nonsense. Nonsynonymous SNPs in start and stop codons are separated as non-start and non-stop SNPs, respectively. SNPs in multiple overlapping features are annotated separately for each feature and multiple nucleotide polymorphisms within a codon are combined before annotation. We have also developed a workflow for Galaxy, a highly used tool for analysing NGS data, to map short reads to a reference genome and extract and annotate the SNPs. TRAMS is a simple program for rapid and accurate annotation of SNPs that will be very useful for microbiologists in analysing genomic diversity in microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. Chapter 19:Unit 19.10.11–21. doi:10.1002/0471142727.mb1910s89

  • Cerdeno-Tarraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31(22):6516–6523

    Article  PubMed  CAS  Google Scholar 

  • Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–1423. doi:10.1093/bioinformatics/btp163

    Article  PubMed  CAS  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403. doi:10.1101/gr.2289704

    Article  PubMed  CAS  Google Scholar 

  • Grant JR, Arantes AS, Liao X, Stothard P (2011) In-depth annotation of SNPs arising from resequencing projects using NGS–SNP. Bioinformatics 27(16):2300–2301. doi:10.1093/bioinformatics/btr372

    Article  PubMed  CAS  Google Scholar 

  • Habegger L, Balasubramanian S, Chen DZ, Khurana E, Sboner A, Harmanci A, Rozowsky J, Clarke D, Snyder M, Gerstein M (2012) VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment. Bioinformatics 28(17):2267–2269. doi:10.1093/bioinformatics/bts368

    Article  PubMed  CAS  Google Scholar 

  • Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, de Lencastre H, Parkhill J, Peacock SJ, Bentley SD (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327(5964):469–474. doi:10.1126/science.1182395

    Article  PubMed  CAS  Google Scholar 

  • Holt KE, Baker S, Weill FX, Holmes EC, Kitchen A, Yu J, Sangal V, Brown DJ, Coia JE, Kim DW, Choi SY, Kim SH, da Silveira WD, Pickard DJ, Farrar JJ, Parkhill J, Dougan G, Thomson NR (2012) Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet 44(9):1056–1059. doi:10.1038/ng.2369

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858. doi:10.1101/gr.078212.108

    Article  PubMed  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  Google Scholar 

  • Sangal V, Tucker NP, Burkovski A, Hoskisson PA (2012a) Draft genome sequence of Corynebacterium diphtheriae biovar intermedius NCTC 5011. J Bacteriol 194(17):4738. doi:10.1128/JB.00939-12

    Article  PubMed  CAS  Google Scholar 

  • Sangal V, Tucker NP, Burkovski A, Hoskisson PA (2012b) The draft genome sequence of Corynebacterium diphtheriae bv. mitis NCTC 3529 reveals significant diversity between the primary disease-causing biovars. J Bacteriol 194(12):3269. doi:10.1128/JB.00503-12

    Article  PubMed  CAS  Google Scholar 

  • Trost E, Blom J, de Castro Soares S, Huang IH, Al-Dilaimi A, Schroder J, Jaenicke S, Dorella FA, Rocha FS, Miyoshi A, Azevedo V, Schneider MP, Silva A, Camello TC, Sabbadini PS, Santos CS, Santos LS, Hirata R, Jr, Mattos-Guaraldi AL, Efstratiou A, Schmitt MP, Ton-That H, Tauch A (2012) Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 194(12):3199–3215. doi:10.1128/JB.00183-12

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. doi:10.1093/nar/gkq603

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Medical Research Scotland Grant 422 FRG to Paul A. Hoskisson. Richard A. Reumerman was funded by a SULSA studentship awarded to Paul R. Herron.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul A. Hoskisson or Vartul Sangal.

Additional information

Availability

TRAMS is available to download as Python script and single file executable for WINDOWS from http://sourceforge.net/projects/strathtrams/files/Latest/ and also in the Galaxy tool shed (http://toolshed.g2.bx.psu.edu/view/rreumerman/snptools).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reumerman, R.A., Tucker, N.P., Herron, P.R. et al. Tool for rapid annotation of microbial SNPs (TRAMS): a simple program for rapid annotation of genomic variation in prokaryotes. Antonie van Leeuwenhoek 104, 431–434 (2013). https://doi.org/10.1007/s10482-013-9953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9953-x

Keywords

Navigation