Skip to main content
Log in

Brevibacillus as a biological tool: a short review

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The significance of Brevibacillus has been documented scientifically in the published literature and commercially in heterologous recombinant protein catalogs. Brevibacillus is one of the most widespread genera of Gram-positive bacteria, recorded from the diverse environmental habitats. The high growth rate, better transformation efficiency by electroporation, availability of shuttle vectors, production of negligible amount of extracellular protease, and the constitutive expression of heterologous proteins make some strains of this genus excellent laboratory models. Regarding biotechnological applications, this genus continues to be a source of various enzymes of great biotechnological interest due to their ability to biodegrade low density polyethylene, ability to act as a candidate bio-control agent, and more recently acknowledged as a tool for the overexpression. This article reviews the properties of Brevibacillus spp. as better biological tools with varied applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akers HA, Lee SG, Lipmann F (1977) Identification of two enzymes responsible for the synthesis of the initial portion of linear gramicidin. Biochemistry 16:5722–5729

    CAS  PubMed  Google Scholar 

  • Allan RN, Lebbe L, Heyrman J, De Vos P, Buchanan CJ, Logan A (2005) Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land Antarctica. Int J Syst Evol Microbiol 55:1039–1050

    CAS  PubMed  Google Scholar 

  • Ando A, Saito A, Arai S, Usuda S, Furuno M, Kaneko N, Shida O, Nagata Y (2008) Molecular characterization of a novel family-46 chitosanase from Pseudomonas sp. A-01. Biosci Biotechnol Biochem 72(8):2074–2081

    CAS  PubMed  Google Scholar 

  • Antes FG, Krupp E, Flores EMM, Antes FG, Krupp E, Flores EMM (2011) Speciation and degradation of triphenyltin in typical paddy fields and its uptake into rice plants. Environ Sci Technol 45:10524–10530

    CAS  PubMed  Google Scholar 

  • Asano Y, Lubbehusen TL (2000) Enzymes acting on peptides containing d-amino acid. J Biosci Bioeng 89:295–306

    CAS  PubMed  Google Scholar 

  • Asatani M, Kurahashi K (1977) Carbohydrate metabolism in Bacillus brevis ATCC 9999. J Biochem 81(4):813–822

    CAS  PubMed  Google Scholar 

  • Baek DH, Kwon SJ, Hong SP, Kwak MS, Lee MH, Song JJ, Lee SG, Yoon KH, Sung MH (2003) Characterization of a thermostable d-stereospecific alanine amidase from Brevibacillus borstelensis BCS-1. Appl Environ Microbiol 69(2):980–986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baek DH, Song JJ, Kwon SJ, Park C, Jung CM, Sung MH (2004) Characteristics of a new enantioselective thermostable dipeptidase from Brevibacillus borstelensis BCS-1 and its application to synthesis of a d-amino-acid-containing dipeptide. Appl Environ Microbiol 70(3):1570–1575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baek SH, Im WT, Oh HW, Lee JS, Oh HM, Lee ST (2006) Brevibacillus ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 56:2665–2669

    CAS  PubMed  Google Scholar 

  • Bajusz S, Kovacs M, Gazdag M, Bokser L, Karashima T, Csernus VJ, Janaky T (1988) Highly potent antagonists of luteinizing hormone releasing hormone free of edematogenic effects. Proc Natl Acad Sci 85:1637–1641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    CAS  PubMed  Google Scholar 

  • Baoyu T, Ning L, Lihui L, Junwei L, Jinkui Y, Keqin Z (2006) Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch Microbiol 186:297–305

    Google Scholar 

  • Che J, Liu B, Lin Y, Tang W, Tang J (2013) Draft genome sequence of biocontrol bacterium Brevibacillus brevis strain FJAT-0809-GLX. Genome Announc 1(2):e0013–e00160

    Google Scholar 

  • Choi MJ, Bae JY, Kim KY, Kang H, Cha CJ (2010) Brevibacillus fluminis sp. nov., isolated from sediment of estuarine wetland. Int J Syst Evol Microbiol 60:1595–1599

    CAS  PubMed  Google Scholar 

  • Claus D, Berkeley CW (1986) The genus Bacillus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, p. 1105

    Google Scholar 

  • D’ Urzo N, Martinelli M, Nenci C, Brettoni C, Telford JL, Maione D (2013) High-level intracellular expression of heterologous proteins in B. choshinensis SP3 under the control of a xylose inducible promoter. Microb Cell Factories 12:12

    Google Scholar 

  • Daniel R, Djukic M, Poehlein A, Thurmer A (2011) Genome sequence of Brevibacillus laterosporus LMG 15441, a pathogen of invertebrates. J Bacteriol 193(19):5535–5536

    PubMed Central  PubMed  Google Scholar 

  • de Barjac H, Bonnefoi A (1972) Essai de classification biochimique de 64 “Bacillus” des groupes II et III representant 11 especes différentes. Ann Inst Pasteur 122:463–473

    Google Scholar 

  • Denariaz G, Payne WJ, Legall J (1989) A halophilic denitrifier, Bacillus halodenitrificans sp. nov. Int J Syst Bacteriol 39:145–151

    CAS  Google Scholar 

  • Edwards SG, Seddon B (2001) Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J Appl Microbiol 91(4):652–659

    CAS  PubMed  Google Scholar 

  • Feron VJ, Til HP, de Flora V, Woutersen RA, Cassee FR, van Bladeren PJ (1991) Aldehydes: occurrence, carcinogenic potential mechanism of action and risk assessment. Mutat Res 259:363–385

    CAS  PubMed  Google Scholar 

  • Fisher GH, Aniell AD, Vetere A, Padula L, Cusano GP, Man EH (1991) Free d-aspartate in normal and Alzheimer brain. Brain Res Bull 26:983–985

    CAS  PubMed  Google Scholar 

  • Flores-Mireles AL, Winans SC, Holguin G (2007) Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots. Appl Environ Microbiol 73:7308–7321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47:3457–3479

    CAS  PubMed  Google Scholar 

  • Garcia JL (1977) Etude de la denitrification chez une bacterie thermophile sporulee. Ann Microbiol A128:447–458

    Google Scholar 

  • Gill I, Jorba L-FRX, Vulfson EN (1996) Biologically active peptides and enzymatic approaches to their production. Enzyme Microb Technol 18:162–183

    CAS  Google Scholar 

  • Goto K, Fujita R, Kato Y, Aaahara M, Yokota A (2004) Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (= NRRL NRS-887) as Aneurinibacillus danicus sp.nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol 54:419–427

    CAS  PubMed  Google Scholar 

  • Haider MH (2006) Partial purification of gelatinase enzyme from local isolate of Brevibacillus laterosporus. Natl J Chem 23:437–442

    Google Scholar 

  • Hassi M, Guendouzi SE, Haggoud A, David S, Ibnsouda S, Houari A, Iraqui M (2012) Antimycobacterial activity of a Brevibacillus laterosporus strain isolated from a Moroccan soil. Braz J Microbiol 2012:1516–1522

    Google Scholar 

  • Horne I, Williams M, Sutherland TD, Russell RJ, Oakeshott JG (2004) A B. choshinensis system that secretes cytoplasmic proteins. J Mol Microbiol Biotechnol 8(2):81–90

    CAS  PubMed  Google Scholar 

  • Hugon P, Mishra AK, Lagier JC, Nguyen TT, Couderc C, Raoult D, Fournier PE (2013) Non-contiguous finished genome sequence and description of Brevibacillus massiliensis sp. nov. Stand Genomic Sci 8:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ichikawa Y, Yamagata H, Tochikub K, Udaka S (1993) Very efficient extracellular production of cholera toxin B subunit using Bacillus brevis. FEMS Microbiol Lett 111:219–224

    CAS  PubMed  Google Scholar 

  • Inan K, Canakci S, Belduz AO, Sahin F (2012) Brevibacillus aydinogluensis sp. nov., a moderately thermophilic bacterium isolated from Karakoc hot spring. Int J Syst Evol Microbiol 62:849–855

    CAS  PubMed  Google Scholar 

  • Ishihara T, Tomita H, Hasegawa Y, Tsukagoshi N, Yamagata H, Udaka S (1995) Cloning and characterization of the gene for a protein thiol-disulfide oxidoreductase Bacillus brevis. J Bacteriol 177:745–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishizuka M, Machida K, Shimada S, Mogi A, Tsuchiya T, Ohmori T, Souma Y, Gonda M, Sone N (1990) Nucleotide sequence of the gene coding for four subunits of cytochrome c oxidase from the thermophilic bacterium PS3. J Biochem 108:866–873

    CAS  PubMed  Google Scholar 

  • Janusz M, Gardlik JM, Young PA, Burkes RV, Stoll SJ, Estelle AF, Riley CM (1990) High potency dipeptide sweeteners. 1. l-aspartyl-d-phenylglycine esters. J Med Chem 33:1052–1061

    CAS  PubMed  Google Scholar 

  • Joshi MN, Sharma A, Pandit AS, Pandya RV, Saxena AK, Bagatharia SB (2013) Draft genome sequence of Brevibacillus sp. strain BAB-2500, a strain that might play an important role in agriculture. Genome Announc 1(1):e00013–e00021

    Google Scholar 

  • Kajino T, Ohto C, Muramatsu M, Obata S, Udaka S, Yamada Y, Takahashi H (2000a) A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis. Appl Environ Microbiol 66(2):638–642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kajino T, Takahashi H, Hirai M, Yamada Y (2000b) Efficient production of artificially designed gelatins with a Bacillus brevis system. Appl Environ Microbiol 66:304–309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kao CH, Hsu WH (2003) A gene cluster involved in pyrimidine reductive catabolism from Brevibacillus agri NCHU1002. Biochem Biophys Res Commun 303(3):848–854

    CAS  PubMed  Google Scholar 

  • Kashima Y, Udaka S (2004) High-level production of hyperthermophilic cellulase in the Bacillus brevis expression and secretion system. Biosci Biotechnol Biochem 68:235–237

    CAS  PubMed  Google Scholar 

  • Kato Y, Asano Y, Nakazawa A, Kondo K (1990) Synthesis of d-alanine oligopeptides catalyzed by d-aminopeptidase in non-aqueous media. Biocatalysis 3:207–215

    CAS  Google Scholar 

  • Kim MK, Sathiyaraj S, Pulla RK, Yang DC (2009) Brevibacillus panacihumi sp. nov., a β-glucosidase-producing bacterium. Int J Syst Evol Microbiol 59:1227–1231

    CAS  PubMed  Google Scholar 

  • Konishi H, Sato T, Yamagata H, Udaka S (1990) Efficient production of human alpha-amylase by a Bacillus brevis mutant. Appl Microbiol Biotechnol 34:297–302

    CAS  PubMed  Google Scholar 

  • Korpole S, Sharma V, Singh PK, Midha S, Ranjan M, Patil PB (2012) Genome sequence of Brevibacillus laterosporus strain GI-9. J Bacteriol 194(5):1279

    PubMed Central  PubMed  Google Scholar 

  • Kusano T, Kuge S, Noguchi S, Sakamoto J, Sone N (1996) Nucleotide and amino acid sequences for cytochrome Caa3-type oxidase of Bacillus stearothermophilus K1041 and non-Michaelis-type kinetics with cytochrome c. Biochim Biophys Acta 1273:129–138

    PubMed  Google Scholar 

  • Laubach CA (1916) Studies on aerobic spore-bearing non-pathogenic bacteria. Spore-bearing organisms in water. J Bacteriol 1:505–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Logan NA, Forsyth L, Lebbe L et al (2002) Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov. Int J Syst Evol Microbiol 52:953–966

    CAS  PubMed  Google Scholar 

  • Maehashi K, Matano M, Saito M, Udaka S (2010) Extracellular production of riboflavin-binding protein, a potential bitter inhibitor, by B. choshinensis. Protein Expr Purif 71(1):85–90

    CAS  PubMed  Google Scholar 

  • Manachini PL, Fortina MG, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Bacteriol 35:493–496

    CAS  Google Scholar 

  • Manuel J (1999) Healthy home environment? Environ Health Perspect 107:352–357

    Google Scholar 

  • Migula W (1900) System der Bakterien, vol 2. Gustav Fisher, Jena

    Google Scholar 

  • Miyauchi A, Ozawa M, Mizukami M, Yashiro K, Ebisu S, Tojo T, Fujii T, Takagi H (1999) Structural conversion from non-native to native form of recombinant human epidermal growth factor by B. choshinensis. Biosci Biotechnol Biochem 63:1965–1969

    CAS  PubMed  Google Scholar 

  • Mizukami M, Hanagata H, Miyauchi A (2010) Brevibacillus expression system: host-vector system for efficient production of secretory proteins. Curr Pharm Biotechnol 11(3):251–258

    CAS  PubMed  Google Scholar 

  • Moon-Hee S (2004) Characteristics of a new enantioselective thermostable dipeptidase from Brevibacillus borstelensis BCS-1 and its application to synthesis of a d-amino-acid-containing dipeptide. Appl Environ Microbiol 70(3):1570–1575

    Google Scholar 

  • Morley JS (1980) Structure–activity relationships of enkephalin-like peptides. Annu Rev Pharmacol Toxicol 20:81–110

    CAS  PubMed  Google Scholar 

  • Mumtaz T, Khan MR, Hassan MA (2010) Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy. Micron 41:430–438

    CAS  PubMed  Google Scholar 

  • Nakamura LK (1991) Bacillus brevis Migula 1900 taxonomy: reassociation and base composition of DNA. Int J Syst Bacteriol 41:510–515

    CAS  PubMed  Google Scholar 

  • Nakamura LK (1993) DNA relatedness of Bacillus brevis Migula 1900 strains and proposal of Bacillus agri sp. nov., nom. rev., and Bacillus centrosporus sp. nov., nom. rev. Int J Syst Bacteriol 43:20–25

    CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, B. thermocatenulatus, B. thermoleovorans, B. kaustophilus, B. thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol 51(Pt 2):433–446

    CAS  PubMed  Google Scholar 

  • Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416

    CAS  PubMed  Google Scholar 

  • Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158

    CAS  PubMed  Google Scholar 

  • Oliveira EJ, Rabinovitch L, Monnerat RG, Liana KP, Viviane Z (2004) Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol 70:6657–6664

    PubMed Central  PubMed  Google Scholar 

  • Onishi H, Mizukami M, Hanagata H, Tokunaga M, Arakawa T, Miyauchi A (2013) Efficient production of anti-fluorescein and anti-lysozyme as single-chain anti-body fragments (scFv) by Brevibacillus expression system. Protein Expr Purif 91(2):184–191

    CAS  PubMed  Google Scholar 

  • Ozaki A, Kawasaki K, Yagasaki M, Hashimoto Y (1992) Enzymatic production of d-alanine from dl-alaninamide by novel d-alaninamide specific amide hydrolase. Biosci Biotechnol Biochem 56:1980–1984

    CAS  Google Scholar 

  • Pedro AQ, Bonifacio MJ, Queiroz JA, Maia CJ, Passarinha LA (2011) A novel prokaryotic expression system for biosynthesis of recombinant human membrane-bound catechol-o-methyltransferase. J Biotechnol 156(2):141–146

    CAS  PubMed  Google Scholar 

  • Pert CB, Pert A, Chang JK, Fong BTW (1976) d-Ala2-metenkephalineamide: a potent, long-lasting synthetic pentapeptide analgesic. Science 194:330–332

    CAS  PubMed  Google Scholar 

  • Pham TH, Boon N, Aelterman P et al (2008) Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77(5):1119–1129

    CAS  PubMed  Google Scholar 

  • Pichinoty F, Garcia JL, Job C, Durand M (1978) La denitrification chez Bacillus licheniformis. Can J Microbiol 24:45–49

    CAS  PubMed  Google Scholar 

  • Pichinoty F, de Barjac H, Mandel M, Asselineau J (1983) Description of Bacillus azotoformans sp. nov. Int J Syst Bacteriol 33:660–662

    Google Scholar 

  • Pramila R, Vijaya RK (2011) Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water—a SEM analysis. Afri J Microbiol Res 5:5013–5018

    CAS  Google Scholar 

  • Pramila R, Kesavaram P, Vijaya R, Krishnan M (2012) Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis—potential candidates for biodegradation of low density polyethylene (LDPE). J Bacteriol Res 4(1):9–14

    CAS  Google Scholar 

  • Radchenkova N, Tomova A, Kambourova M (2011) Biosynthesis of an exopolysaccharide produced by Brevibacillus thermoruber. Biotechnol Biotechnological Equip 25(4):438

    Google Scholar 

  • Rhobinson T (1976) d-Amino acids in higher plants. Life Sci 19:1097–1102

    Google Scholar 

  • Rygus T, Scheler A, Allmansberger R, Hillen W (1991) Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Arch Microbiol 155:535–542

    CAS  PubMed  Google Scholar 

  • Sagiya Y, Yamagata H, Udaka S (1994) Direct high-level secretion into the culture medium of tuna growth hormone in biologically active form by Bacillus brevis. Appl Microbiol Biotechnol 42:358–363

    CAS  PubMed  Google Scholar 

  • Saloomeh E, Abbass AS (2008) Exopolysaccharide production by strain of Brevibacillus brevis: potential applications in the treatment of hydrocarbons pollution and use in microbial enhance oil recovery (MEOR). In: 2nd WSEAS international conference. On management, marketing and finances (MMF’08), Harvard, MA, USA

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomical implications. Bacteriol Rev 36:407–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shah AA, Hassan F, Hameed A, Ahmed S (2009) Biological degradation of plastic—a comprehensive review. Biotech Adv 26:246–265

    Google Scholar 

  • Shapleigh J (2006) The denitrifying prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 2. Springer, New York, pp 769–792

    Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Udaka S, Nakamura KL, Komagata K (1995) Proposal of Bacillus reuszeri sp. nov., Bacillus formosus sp. nov., nom. rev. and Bacillus borstelensis sp. nov., nom. rev. Int J Syst Bacteriol 45(1):93–100

    Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946

    CAS  PubMed  Google Scholar 

  • Shiga Y, Maki M, Ohta T, Tokishita S, Okamoto A, Tsukagoshi N, Udaka S, Konishi A, Kodama Y, Ejima D, Matsui H, Yamagata H (2000) Efficient production of N-terminally truncated biologically active human interleukin-6 by Bacillus brevis. Biosci Biotechnol Biochem 64:665–669

    CAS  PubMed  Google Scholar 

  • Shoun H, Kano M, Baba I, Takaya N, Matsuo M (1998) Denitrification by actinomycetes and purification of dissimilatory nitrite reductase and azurin from Streptomyces thioluteus. J Bacteriol 180:4413–4415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sleytr UB, Messner P (1988) Crystalline surface layers on bacteria. In: Sleytr UB, Messner P, Pum D, Sara M (eds) Crystalline bacterial cell surface layers. Springer-Verlag KG, Berlin, pp 160–186

    Google Scholar 

  • Song Z, Liu Q, Guo H, Ju R, Zhao Y, Li J, Liu X (2012) Tostadin, a novel antibacterial peptide from an antagonistic microorganism Brevibacillus brevis XDH. Bioresour Technol 111:504–506

    CAS  PubMed  Google Scholar 

  • Sridevi N, Prabhune AA (2009) Brevibacillus sp.: a novel thermophilic source for the production of bile salt hydrolase. Appl Biochemi Biotechnol 157(2):254–262

    CAS  Google Scholar 

  • Srinivasan K (2011) Traditional Indian functional foods. In: Shi J, Ho C-T, Shahidi F (eds) Functional foods of east. CRC Press, Boca Raton

    Google Scholar 

  • Sugimoto S, Iwase T, Sato F, Tajima A, Shinji H, Mizunoe Y (2011) Cloning, expression and purification of extracellular serine protease Esp, a biofilm-degrading enzyme, from Staphylococcus epidermidis. J Appl Microbiol 111:1406–1415

    CAS  PubMed  Google Scholar 

  • Sunita C, Eunice JA, Steve W (2010) Biological control of Fusarium oxysporum f. sp. lycopersici on tomato by Brevibacillus brevis. J Phytopathol 158:470–478

    Google Scholar 

  • Takagi H, Shida O, Kadowaki K, Komagata K, Udaka S (1993) Characterization of Bacillus brevis, with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galuctophilus sp. nov. Int J Syst Bacteriol 43:221–231

    CAS  PubMed  Google Scholar 

  • Takano T, Miyauchi A, Takagi H, Kadowaki K, Yamane K, Kobayashi S (1992) Expression of the cyclodextrin glucanotransferase gene of Bacillus macerans in Bacillus brevis. Biosci Biotech Biochem 56(5):808–809

    CAS  Google Scholar 

  • Takebe F, Hirota K, Nodasaka Y, Yumota I (2012) Brevibacillus nitrificans sp. nov., a nitrifying bacterium isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks. Int J Syst Evol Microbiol 62:2121–2126

    CAS  PubMed  Google Scholar 

  • Takimura Y, Kato M, Ohta T, Yamagata H, Udaka S (1997) Secretion of human interleukin-2 in biologically active form by Bacillus brevis directly into culture medium. Biosci Biotechnol Biochem 61(11):1858–1861

    CAS  PubMed  Google Scholar 

  • Tanaka R, Mizukami M, Ishibashi M, Tokunaga H, Tokunaga M (2003) Cloning and expression of the ccdA-associated thiol-disulfide oxidoreductase (catA) gene from B. choshinensis: stimulation of human epidermal growth factor production. J Biotechnol 103(1):1–10

    CAS  PubMed  Google Scholar 

  • Teramura N, Tanaka K, Iijima K, Hayashida O, Suzuki K, Hattori S, Irie S (2011) Cloning of a novel collagenase gene from the Gram-negative bacterium Grimontia (Vibrio) hollisae 1706B and its efficient expression in B. choshinensis. J Bacteriol 193(12):3049–3056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    CAS  PubMed  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Environmental microbiology of anaerobes. Wiley, New York, pp 179–244

    Google Scholar 

  • Tokunaga H, Yamakawa M, Mizukami M, Takagi H, Tokunaga M (1998) Molecular cloning of the dnaK locus, and purification and characterization of a DnaK protein from Bacillus brevis HPD31. Biochimica et Biophysica Acta (BBA) 1387(1–2):65–79

    CAS  Google Scholar 

  • Tokunaga M, Mizukami M, Yamasaki K, Tokunaga H, Onishi H, Hanagata H, Ishibashi M, Miyauchi A, Tsumoto K, Arakawa T (2013) Secretory production of single-chain antibody (scFv) in B. choshinensis using novel fusion partner. Appl Microbiol Biotechnol 97(19):8569–8580

    CAS  PubMed  Google Scholar 

  • Uchida H, Kondo D, Yamashita A, Nagaosa Y, Sakurai T, Fujii Y, Fujishiro K, Aisaka K, Uwajima T (2003) Purification and characterization of an aldehyde oxidase from Pseudomonas sp. KY4690. FEMS Microbiol Lett 229:31–36

    CAS  PubMed  Google Scholar 

  • Uchida H, Fukuda T, Satoh Y, Okamura Y, Toriyama A, Yamashita A, Aisaka K, Sakurai T, Nagaosa Y, Uwajima T (2005) Characterization and potential application of purified aldehyde oxidase from Pseudomonas stutzeri IFO12695. Appl Microbiol Biotechnol 68:53–56

    CAS  PubMed  Google Scholar 

  • Uchida H, Okamura Y, Yamanaka H, Fukuda T, Haneda S, Aisaka K, Fujii Y (2006) Purification and some properties of an aldehyde oxidase from Streptomyces rimosus ATCC10970. World J Microbiol Biotechnol 22:469–474

    CAS  Google Scholar 

  • Udaka S, Yamagata H (1993) High-level secretion of heterologous proteins by Bacillus brevis. Methods Enzymol 217:23–33

    CAS  PubMed  Google Scholar 

  • Urata K, Satoh T (1991) Enzyme localization and orientation of the active site of dissimilatory nitrite reductase from Bacillus firmus. Arch Microbiol 156:24–27

    CAS  Google Scholar 

  • Usha Kiran KA, Anu Appaiah KA, Sushma A (2012) Extension of shelf life of curd—an Indian fermented milk by using a new isolate of Brevibacillus brevis strain as starter culture. Innovative Rom Food Biotechnol 10:48–55

    Google Scholar 

  • Verbaendert I, Boon N, Vos PD, Heylen K (2011a) Denitrification is a common feature among members of the genus Bacillus. Syst Appl Microbiol 34:385–391

    CAS  PubMed  Google Scholar 

  • Verbaendert I, Vos PD, Boon N, Heylen K (2011b) Denitrification in Gram-positive bacteria: an underexplored trait. Biochem Soc Trans 39(1):254–258

    CAS  PubMed  Google Scholar 

  • Vivas A, Barea JM, Azcon R (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134(2):257–266

    CAS  PubMed  Google Scholar 

  • West JB, Wong CH (1986) Enzyme-catalyzed irreversible formation of peptides containing d-amino acids. J Org Chem 51:2728–2735

    CAS  Google Scholar 

  • West JB, Scholten J, Stolowich NJ, Hogg JL, Scott AI, Wong CH (1988) Modification of proteases to esterases for peptide synthesis: methyl chymotrypsin. J Am Chem Soc 110:3709–3710

    CAS  Google Scholar 

  • Wu X, Ballard J, Jiang YW (2005) Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus. Appl Environ Microbiol 71(12):8519–8530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaginuma A, Tsukita S, Sakamoto J, Sone N (1997) Characterization of two terminal oxidases in Bacillus brevis and efficiency of energy conservation of the respiratory chain. J Biochem 122:969–976

    CAS  PubMed  Google Scholar 

  • Yamada H, Tsukagoshi N, Udaka S (1981) Morphological alterations of cell wall concomitant with protein release in a protein-producing bacterium, Bacillus brevis 47. J Bacteriol 148(1):322–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamagata H, Nakahama K, Suzuki Y, Kakinuma A, Tsukakoshi N, Udaka S (1989) Use of Bacillus brevis for efficient synthesis and secretion of human epidermal growth factor. Proc Natl Acad Sci 86:3589–3593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto A, Iwata A, Saito T, Watanabe F, Ueda S (2009) Expression and purification of canine granulocyte colony-stimulating factor (cG–CSF). Vet Immunol Immunopathol 130(3–4):221–225

    CAS  PubMed  Google Scholar 

  • Yang CF, Lee CM (2007) Enrichment isolation, and characterization of phenol-degrading Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6. Int Biodeterioration Biodegradation 59(3):206–210

    CAS  Google Scholar 

  • Yasar Yildiz S, Anzelmo G, Ozer T, Radchenkova N, Genc S, Di Donato P, Nicolaus B, Toksoy Oner E, Kambourova M (2013) Brevibacillus themoruber: a promising microbial cell factory for exopolysaccharide production. J Appl Microbiol. doi:10.1111/jam.12362

    PubMed  Google Scholar 

  • Yashiro K, Lowenthal JW, Neil TEO, Ebisu S, Takagi H (2001) High-level production of recombinant chicken interferon-γ by B. choshinensis. Protein Expr Purif 23(1):113–120

    CAS  PubMed  Google Scholar 

  • Yasuhara A, Akiba-Goto M, Fujishiro K, Uchida H, Uwajima T, Aisaka K (2002) Production of aldehyde oxidases by microorganisms and their enzymatic properties. J Biosci Bioeng 94:124–129

    CAS  PubMed  Google Scholar 

  • Ye J, Yin H, Peng H, Bai J, Xi D, Wang L (2013) Biosorption and biodegradation of triphenyltin by Brevibacillus brevis. Bioresour Technol 129:236–241

    CAS  PubMed  Google Scholar 

  • Yoshifumi M, Yagyu A, Sakurai A, Fujii Y, Uchida H (2008) Characterization of aldehyde oxidase from Brevibacillus sp. MEY43 and its application to oxidative removal of glutaraldehyde. World J Microbiol Biotechnol 24:797–804

    Google Scholar 

  • Yuki Y, Hara-Yakoyama C, Guadiz AA, Udaka S, Kiyono H, Chatterjee S (2005) Production of a recombinant cholera toxin B subunit-insulin B chain peptide hybrid protein by B. choshinensis expression system as a nasal vaccine against autoimmune diabetes. Biotechnol Bioeng 92(7):803–809

    CAS  PubMed  Google Scholar 

  • Zahra S, Shojaosadati SA, Mohammad-Taheri M, Nosrati M (2010) Biodegradation of low density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manag 30:396–401

    CAS  PubMed  Google Scholar 

  • Zhang ZB, Hu JY, Zhen HJ, Wu XQ, Huang C (2008) Reproductive inhibition and transgenerational toxicity of triphenyltin on medaka (Oryzias latipes) at environmentally relevant tip levels. Environ Sci Technol 42:8133–8139

    CAS  PubMed  Google Scholar 

  • Zhou Q, Chen W, Wang Y, Li D, Li L, Xiao Q (2012) Draft genome sequence of Brevibacillus brevis strain X23, a biocontrol agent against bacterial wilt. J Bacteriol 194(23):6634

    PubMed Central  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge DST, Government of India, for financial assistance vide Project No. SB/FT/LS-335/2012 and DBT-State Biotech Hub, BIF Centre, Mizoram University, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Kumari Panda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, A.K., Bisht, S.S., DeMondal, S. et al. Brevibacillus as a biological tool: a short review. Antonie van Leeuwenhoek 105, 623–639 (2014). https://doi.org/10.1007/s10482-013-0099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0099-7

Keywords

Navigation