Skip to main content
Log in

Micromonospora maoerensis sp. nov., isolated from a Chinese pine forest soil

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinomycete, designated strain NEAU-MES19T, was isolated from pine forest soil in Heilongjiang province, China. A polyphasic study was carried out to establish the taxonomic position of this strain. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain NEAU-MES19T was most closely related to Micromonospora matsumotoense IMSNU 22003T. However, phylogenetic analysis based on the gyrB gene sequence showed that the isolate was more closely related to Micromonospora cremea CR30T than M. matsumotoense IMSNU 22003T. The low level of DNA–DNA relatedness allowed the isolate to be differentiated from M. matsumotoense IMSNU 22003T and M. cremea CR30T. Moreover, strain NEAU-MES19T could also be distinguished from its closest phylogenetic relatives by morphological, physiological and biochemical characteristics. Therefore, it is proposed that strain NEAU-MES19T represents a novel species of the genus Micromonospora, for which the name Micromonospora maoerensis sp. nov. is proposed. The type strain is NEAU-MES19T (=CGMCC 4.7091T = DSM 45884T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Carro L, Pukall R, Spröer C, Kroppenstedt RM, Trujillo ME (2012) Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum. Int J Syst Evol Microbiol 62:2971–2977

    Article  PubMed  Google Scholar 

  • Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, DE Minnikin (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284

    Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2013) Micromonospora jinlongensis sp. nov., isolated from mucky soil in China. Antonie Van Leeuwenhoek. doi:10.1007/s10482-013-0074-3

    Google Scholar 

  • Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    Article  PubMed  Google Scholar 

  • Gordon RE, Barnett DA, Handerhan JE, Pang CH-N (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63

    Article  Google Scholar 

  • Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Tamura T, Harayama S (2000) Intrageneric relation-ships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 50:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto I (1989) Genus Micromonospora Orskov 1923 147AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2442–2450

    Google Scholar 

  • Kelly KL (1964) Inter-society color council–national bureau of standards color name charts Illustrated with centroid colors. US Government Printing Office, Washington DC

    Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kirby BM, Meyers PR (2010) Micromonospora tulbaghia sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int J Syst Evol Microbiol 60:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic press, London, pp 173–199

    Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  • Lechevalier MP, De Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Lee SD, Goodfellow M, Han YC (1999) A phylogenetic analysis of the genus Catellatospora based on 16S ribosomal DNA sequences, including transfer of Catellatospora matsumotoense to the genus Micromonospora as Micromonospora matsumotoense comb nov. FEMS Microbiol Lett 178:349–354

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Kim HW, Liu CL, Lee HK (2003) A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods 52:245–250

    Article  CAS  PubMed  Google Scholar 

  • Loqman S, Barka EA, Clément C, Ouhdouch Y (2009) Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 25:81–91

    Article  Google Scholar 

  • Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206

    Article  Google Scholar 

  • McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of gram-positive bacteria. Lett Appl Microbiol 30:178–182

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Ørskov J (1923) Investigations into the morphology of the ray fungi. Levin and Munksgaard, Enhagen

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagman GH, Weinstein MJ (1980) Antibiotic from Micromonospora. Annu Rev Microbiol 34:537–557

    Article  CAS  PubMed  Google Scholar 

  • Waksman SA (1961) The Actinomycetes classification, identification and descriptions of genera and species, vol 2. Williams and Wilkins, Baltimore

    Google Scholar 

  • Waksman SA (1967) The Actinomycetes. A summary of knowledge. Ronald Press, New York

    Google Scholar 

  • Wang C, Xu XX, Qu Z, Wang HL, Lin HP, Xie QY, Ruan JS, Hong K (2011) Micromonospora rhizosphaerae sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 61:320–324

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178 English translation of Microbiology (Beijing)

    CAS  Google Scholar 

  • Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Outstanding Youth Foundation (No. 31225024), the National Key Project for Basic Research (No. 2010CB126102) the National Key Technology R&D Program (No. 2012BAD19B06), the Program for New Century Excellent talents in University (NCET-11-0953), the National Natural Science Foundation of China (Nos .31372006, 31171913 and 31071750), the Outstanding Youth Foundation of Heilongjiang Province (JC201201) and Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangjing Wang or Wensheng Xiang.

Additional information

Chuang Li and Chongxi Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Liu, C., Zhao, J. et al. Micromonospora maoerensis sp. nov., isolated from a Chinese pine forest soil. Antonie van Leeuwenhoek 105, 451–459 (2014). https://doi.org/10.1007/s10482-013-0096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0096-x

Keywords

Navigation