Skip to main content
Log in

Analysis of developmental gene conservation in the Actinomycetales using DNA/DNA microarray comparisons

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Based on available genome sequences, Actinomycetales show significant gene synteny across a wide range of species and genera. In addition, many genera show varying degrees of complex morphological development. Using the presence of gene synteny as a basis, it is clear that an analysis of gene conservation across the Streptomyces and various other Actinomycetales will provide information on both the importance of genes and gene clusters and the evolution of morphogenesis in these bacteria. Genome sequencing, although becoming cheaper, is still relatively expensive for comparing large numbers of strains. Thus, a heterologous DNA/DNA microarray hybridization dataset based on a Streptomyces coelicolor microarray allows a cheaper and greater depth of analysis of gene conservation. This study, using both bioinformatical and microarray approaches, was able to classify genes previously identified as involved in morphogenesis in Streptomyces into various subgroups in terms of conservation across species and genera. This will allow the targeting of genes for further study based on their importance at the species level and at higher evolutionary levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aínsa JA, Bird N, Ryding NJ, Findlay KC, Chater KF (2010) The complex whiJ locus mediates environmentally sensitive repression of development of Streptomyces coelicolor A3(2). Antonie van Leeuwenhoek Int J Gen Mol Microbiol. doi:10.1007/s10482-010-9443-3

  • Andersson DI, Hughes D (2009) Gene amplification and adaptive evolution in bacteria. Annu Rev Genet 43:167–195

    Article  CAS  PubMed  Google Scholar 

  • Ausmees N, Wahlstedt H, Bagchi S, Elliot MA, Buttner MJ, Flardh K (2007) SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa. Mol Microbiol 5:1458–1473

    Article  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A32. Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF (2004) SCP1, a 356, 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51:1615–1628

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ, Molle V, Buttner MJ (2000) σBldN, an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 182:4606–4616

    Article  CAS  PubMed  Google Scholar 

  • Bignel DRD, Warawa JK, Strap JL, Chater KF, Leskiw BK (2000) Study of the bldG locus suggests that an antianti-sigma factor and an anti-sigma factor may be involved in Streptomyces coelicolor antibiotic production and sporulation. Microbiology 146:2161–2173

    Google Scholar 

  • Champness WC (1988) New loci required for Streptomyces coelicolor morphological and physiological differentiation. J Bacteriol 170:1168–1174

    CAS  PubMed  Google Scholar 

  • Chater KF, Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30:651–672

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Huang CH, Lee HH, Tsai HH, Kirby R (2002) Once the circle has been broken, dynamics, and evolution of Streptomyces chromosomes. Trends Genet 18:522–529

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Wösten HAB, van Keulen G, Faber OG, Alves AMCR, Meijer WG, Dijkhuizen L (2002) Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44:1483–1492

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FGH, Dijkhuizen L, Wosten HAB (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Stokroos I, Deelstra HJ, Penninga NA, Bormann C, Salas JA, Dijkhuizen L, Wösten HA (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53:433–443

    Article  CAS  PubMed  Google Scholar 

  • Datta P, Dasgupta A, Singh AK, Mukherjee K, Kundu M, Basu J (2006) Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 62:1655–1673

    Article  CAS  PubMed  Google Scholar 

  • de Been M, Francke C, Moezelaar R, Abee T, Siezen RJ (2006) Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology 152:3035–3048

    Article  PubMed  Google Scholar 

  • de Jong W, Wösten HAB, Dijkhuisen L, Claessen D (2009) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73:1128–1140

    Article  PubMed  Google Scholar 

  • Di Berardo C, Capstick DS, Bibb MJ, Findlay KC, Buttner MJ, Elliot MA (2008) Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J Bacteriol 190:5879–5889

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis, and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  Google Scholar 

  • Elliot MA, Karoonuthaisiri N, Huang JQ, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727–1740

    Article  CAS  PubMed  Google Scholar 

  • Flärdh K (2003) Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 49:1523–1536

    Article  PubMed  Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49

    Article  PubMed  Google Scholar 

  • Gollub J, Ball CA, Binkley G, Demeter J, Finkelstein DB, Hebert JM, Goodner BW, Markelz BP, Flanagan MC, Crowell CB Jr, Racette JL, Schilling BA, Halfon LM, Mellors JS, Gabowski G (1999) Combined genetic, and physical map of the complex genome of Agrobacterium tumefaciens. J Bacteriol 181:5160–5166

    Google Scholar 

  • Griffiths E, Gupta RS (2002) Protein signatures distinctive of chlamydial species: horizontal transfers of cell wall biosynthesis genes glmU from archaea to chlamydiae and murA between chlamydiae and Streptomyces. Microbiology 148:2541–2549

    CAS  PubMed  Google Scholar 

  • Hoskisson PA, Rigali S, Fowler K, Findlay KC, Buttner MJ (2006) DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J Bacteriol 188:5014–5023

    Article  CAS  PubMed  Google Scholar 

  • Hsiao N-H, Kirby R (2008) Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimuss and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 93:1–25

    Article  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Jakimowicz D, Mouz S, Zakrzewska-Czerwińska J, Chater KF (2006) Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J Bacteriol 188:1710–1720

    Article  CAS  PubMed  Google Scholar 

  • Jayapal KP, Lian W, Glod F (2007) Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 8:229–240

    Article  PubMed  Google Scholar 

  • Keijser BJF, van Wezel GP, Canters GW, Vijgenboom E (2002) Developmental regulation of the Streptomyces lividans ram genes: involvement of RamR in regulation of the ramCSAB operon. J Bacteriol 184:4420–4429

    Article  CAS  PubMed  Google Scholar 

  • Kelemen GH, Brown GL, Kormanec J, Potûcková L, Chater KF, Buttner MJ (1996) The positions of the sigma-factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol Microbiol 21:593–603

    Article  CAS  PubMed  Google Scholar 

  • Kirby R, Hopwood DA (1977) Genetic determination of methylenomycin synthesis and resistance by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 98:239–252

    CAS  PubMed  Google Scholar 

  • Kirby R, Wright LF, Hopwood DA (1975) Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature (London) 254:265–267

    Article  CAS  Google Scholar 

  • Kirby R, Gan T-K, Tilley E, Herron P, Hunter I (2008) The genome of Streptomyces rimosus subsp. rimosus shows a novel structure compared to other Streptomyces using DNA/DNA microarray analysis. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 94:173–186

    Article  CAS  Google Scholar 

  • Lin YS, Kieser HM, Hopwood DA, Chen CW (1993) The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10:923–933

    Article  CAS  PubMed  Google Scholar 

  • Marraffini LA, Schneewind O (2006) Targeting proteins to the cell wall of sporulating Bacillus anthracis. Mol Microbiol 62:1402–1417

    Article  CAS  PubMed  Google Scholar 

  • Mazza P, Noens EE, Schirner K, Grantcharova N, Mommaas AM, Koerten HK, Muth G, Flärdh K, van Wezel GP, Wohlleben W (2006) MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol Microbiol 60:838–852

    Article  CAS  PubMed  Google Scholar 

  • Mercer KLN, Weiss DS (2002) The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol 184:904–912

    Article  CAS  PubMed  Google Scholar 

  • Miyadoh S (Editor in Chief) (1997) Atlas of Actinomycetes. Asakura Publishing Co. Ltd.

  • Morris RP, Nguyen L, Gatfield J, Visconti K, Nguyen K, Schnappinger D, Ehrt S, Liu Y, Heifets L, Pieters J, Schoolnik G, Thompson CJ (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102:12200–12205

    Article  CAS  PubMed  Google Scholar 

  • Nodwell JR, Yang M, Kuo D, Losick R (1999) Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics 151:569–584

    Google Scholar 

  • Noens EE, Mersinias V, Traag BA, Smith CP, Koerten HK, van Wezel GP (2005) SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol Microbiol 58:929–944

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  CAS  PubMed  Google Scholar 

  • Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218

    Article  CAS  PubMed  Google Scholar 

  • Smucker RA, Pfister RM (1978) Characteristics of Streptomyces coelicolor A3(2) aerial spore rodlet mosaic. Can J Microbiol 24:397–408

    Article  CAS  PubMed  Google Scholar 

  • Tamames J, González-Moreno M, Mingorance J, Valencia A, Vicente M (2001) Bringing gene order into bacterial shape. Trends Genet 17:124–126

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Fowler K, Findlay K, Tan H, Chater KF (2007) An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor. J Bacteriol 189:2873–2885

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Viell P, Altenbuchner J (1997) Artificial circularization of the chromosome with concomitant deletion of its terminal inverted repeats enhances genetic instability and genome rearrangement in Streptomyces lividans. Mol Gen Genet 253:753–760

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yu Y, He X, Zhou X, Deng Z, Chater KF, Tao M (2007) Role of an FtsK-like protein in genetic stability in Streptomyces coelicolor A3(2). J Bacteriol 189:2310–2318

    Article  CAS  PubMed  Google Scholar 

  • Wehrl W, Niederweis M, Schumann W (2000) The FtsH protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J Bacteriol 182:3870–3873

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth H, Wehrli E, Horne RW (1971) The surface structure of spores and aerial mycelium in Streptomyces coelicolor. J Ultrastruct Res 35:168–180

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Traag BA, Willemse J, McMullan D, Miller MD, Elsliger MA, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Carlton D, Chen C, Chiu HJ, Chruszcz M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Ernst D, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, Minor W, Mommaas AM, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Wang S, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA, van Wezel GP (2009) Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes. J Biol Chem 284:25268–25279

    Article  CAS  PubMed  Google Scholar 

  • Yang CC, Huang CH, Li CY, Tsay YG, Lee SC, Chen CW (2002) The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol Microbiol 43:297–305

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Kirby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Visual representation of the microarray results presented in Table 1. Green represents lower hybridization signal relative to S. coelicolor, red higher hybridization signal relative to S. coelicolor, while black represents a similar level of hybridization to S. coelicolor. (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirby, R., Herron, P. & Hoskisson, P. Analysis of developmental gene conservation in the Actinomycetales using DNA/DNA microarray comparisons. Antonie van Leeuwenhoek 99, 159–177 (2011). https://doi.org/10.1007/s10482-010-9473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9473-x

Keywords

Navigation