Skip to main content
Log in

Rational design for over-production of desirable microbial metabolites by precision engineering

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Microbes represent a valuable source of commercially significant natural products that have improved our quality of life. Precision engineering can be used to precisely identify and specifically modify genes responsible for production of natural products and improve this production or modify the genes creating products that would not otherwise be produced. There have been several success stories concerning the manipulation of regulatory genes, pathways, and genomes to increase the productivity of industrial microbes. This review will focus on the strategies and integrated approaches for precisely deciphering regulatory genes by various modern techniques. The applications of precision engineering in rational strain improvement also shed light on the biology of natural microbial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

pre-NDA:

pre-New drug application

MFA:

Metabolic flux analysis

SAM:

S-adenosylmethionine

CoA:

Coenzyme A

1,3-PD:

1,3-Propanediol

ALDH:

Aldehyde dehydrogenase

DCA:

Dicarboxylic acid

TCA:

Tricarboxylic acid

HMG-CoA:

3-hydroxy-3-methyl-glutaryl-coenzyme A

ADS:

Amorphadiene synthase

tHMGR:

HMG-CoA reductase

CEF:

control effective flux

PCA:

Principal component analysis

References

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science (New York, NY) 314:1565–1568

    CAS  Google Scholar 

  • Andersen MR, Nielsen ML, Nielsen J (2008) Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 4:178. doi:10.1038/msb.2008.12

    Article  PubMed  Google Scholar 

  • Anderson RW, Laval-Martin DL, Edmunds LN Jr (1985) Cell cycle oscillators. Temperature compensation of the circadian rhythm of cell division in Euglena. Exp Cell Res 157:144–158

    Article  CAS  PubMed  Google Scholar 

  • Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  PubMed  Google Scholar 

  • Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW, Feibelman TP, Mayorga ME, Maxon ME, Sykes K, Tobin JV, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156

    Article  CAS  PubMed  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science (New York, NY) 252:1668–1675

    CAS  Google Scholar 

  • Bailey JE (1998) Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol Prog 14:8–20

    Article  CAS  PubMed  Google Scholar 

  • Blandin G, Ozier-Kalogeropoulos O, Wincker P, Artiguenave F, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 16. Candida tropicalis. FEBS Lett 487:91–94

    Article  CAS  PubMed  Google Scholar 

  • Blatny JM, Godager L, Lunde M, Nes IF (2004) Complete genome sequence of the Lactococcus lactis temperate phage phiLC3: comparative analysis of phiLC3 and its relatives in lactococci and streptococci. Virology 318:231–244

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    Article  CAS  PubMed  Google Scholar 

  • Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71:6465–6472

    Article  CAS  PubMed  Google Scholar 

  • Cakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J (2007) Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst Biol 1:18

    Article  PubMed  Google Scholar 

  • Cao Z, Gao H, Liu M, Jiao P (2006) Engineering the acetyl-CoA transportation system of candida tropicalis enhances the production of dicarboxylic acid. Biotechnol J 1:68–74

    Article  CAS  PubMed  Google Scholar 

  • Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongere E, Bossy R, Loux V, Zagorec M (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23 K. Nat Biotechnol 23:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Cherry JM, Ball C, Weng S, Juvik G, Schmidt R, Adler C, Dunn B, Dwight S, Riles L, Mortimer RK, Botstein D (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature 387:67–73

    Article  CAS  PubMed  Google Scholar 

  • Davies J (2009) Everything depends on everything else. Clin Microbiol Infect 15(Suppl 1):1–4

    Article  PubMed  Google Scholar 

  • Domingues L, Dantas MM, Lima N, Teixeira JA (1999a) Continuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain. Biotechnol Bioeng 64:692–697

    Article  CAS  PubMed  Google Scholar 

  • Domingues L, Teixeira JA, Lima N (1999b) Construction of a flocculent Saccharomyces cerevisiae fermenting lactose. Appl Microbiol Biotechnol 51:621–626

    Article  CAS  PubMed  Google Scholar 

  • Elander RP (2003) Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 61:385–392

    CAS  PubMed  Google Scholar 

  • Fu RY, Bongers RS, van S II, Chen J, Molenaar D, Kleerebezem M, Hugenholtz J, Li Y (2006) Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metab Eng 8:662–671

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623

    Article  CAS  PubMed  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Jeong KJ, Yoo JS, Lee SY (2003) Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl Environ Microbiol 69:5772–5781

    Article  CAS  PubMed  Google Scholar 

  • Henne A, Bruggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553

    Article  CAS  PubMed  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  CAS  PubMed  Google Scholar 

  • Holland HD (1997) Evidence for life on Earth more than 3850 million years ago. Science (New York, NY) 275:38–39

    CAS  Google Scholar 

  • Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 17:588–592

    Article  CAS  PubMed  Google Scholar 

  • Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, Rudd BA, Floss HG, Omura S (1985) Production of ‘hybrid’ antibiotics by Precision Engineering. Nature 314:642–644

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Isogai T, Fukagawa M, Aramori I, Iwami M, Kojo H, Ono T, Ueda Y, Kohsaka M, Imanaka H (1991) Construction of a 7-aminocephalosporanic acid (7ACA) biosynthetic operon and direct production of 7ACA in Acremonium chrysogenum. Bio/technology (Nature Publishing Company) 9:188–191

    Article  CAS  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  • Kim DJ, Huh JH, Yang YY, Kang CM, Lee IH, Hyun CG, Hong SK, Suh JW (2003) Accumulation of S-adenosyl-l-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J Bacteriol 185:592–600

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995

    Article  CAS  PubMed  Google Scholar 

  • Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784

    Article  PubMed  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valine. Appl Environ Microbiol 69:2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee DE, Lee BU, Kim HS (2003) Global analyses of transcriptomes and proteomes of a parent strain and an l-threonine-overproducing mutant strain. J Bacteriol 185:5442–5451

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948

    Article  CAS  PubMed  Google Scholar 

  • Lopez de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180:3804–3808

    CAS  PubMed  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  PubMed  Google Scholar 

  • Meijnen JP, de Winde JH, Ruijssenaars HJ (2008) Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and l-arabinose. Appl Environ Microbiol 74:5031–5037

    Article  CAS  PubMed  Google Scholar 

  • Menzel K, Zeng AP, Deckwer WD (1997) Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. J Biotechnol 56:135–142

    Article  CAS  PubMed  Google Scholar 

  • Mogensen J, Nielsen HB, Hofmann G, Nielsen J (2006) Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. Fungal Genet Biol 43:593–603

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Dusterhoft A, Tummler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J (1998) The role of metabolic engineering in the production of secondary metabolites. Curr Opin Microbiol 1:330–336

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    Article  CAS  PubMed  Google Scholar 

  • Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Article  CAS  PubMed  Google Scholar 

  • Ochi K, Freese E (1982) A decrease in S-adenosylmethionine synthetase activity increases the probability of spontaneous sporulation. J Bacteriol 152:400–410

    CAS  PubMed  Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K (2003) Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol 185:601–609

    Article  CAS  PubMed  Google Scholar 

  • Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25:447–453

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Ikeda H, Malpartida F, Kieser HM, Hopwood DA (1986) Production of new hybrid antibiotics, mederrhodins A and B, by a genetically engineered strain. Antimicrob Agents Chemother 29:13–19

    CAS  PubMed  Google Scholar 

  • Ostergaard S, Roca C, Ronnow B, Nielsen J, Olsson L (2000) Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene. Biotechnol Bioeng 68:252–259

    Article  CAS  PubMed  Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104:7797–7802

    Article  CAS  PubMed  Google Scholar 

  • Patnaik R (2008) Engineering complex phenotypes in industrial strains. Biotechnol Prog 24:38–47

    Article  CAS  PubMed  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  PubMed  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Roessner CA, Scott AI (1996) Genetically engineered synthesis of natural products: from alkaloids to corrins. Annu Rev Microbiol 50:467–490

    Article  CAS  PubMed  Google Scholar 

  • Romero S, Merino E, Bolivar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73:5190–5198

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    CAS  PubMed  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427

    Article  CAS  PubMed  Google Scholar 

  • Schellekens P, Rosielle N, Vermeulen H, Wetzels S, Pril W (1998) Design for precision: current status and trends. Ann CIRP 47:557–586

    Article  Google Scholar 

  • Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68

    Article  CAS  PubMed  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774

    Article  CAS  PubMed  Google Scholar 

  • Stahler P, Beier M, Gao X, Hoheisel JD (2006) Another side of genomics: synthetic biology as a means for the exploitation of whole-genome sequence information. J Biotechnol 124:206–212

    Article  PubMed  Google Scholar 

  • Stambuk BU, Alves SL Jr, Hollatz C, Zastrow CR (2006) Improvement of maltotriose fermentation by Saccharomyces cerevisiae. Lett Appl Microbiol 43:370–376

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science (New York, NY) 252:1675–1681

    CAS  Google Scholar 

  • Takarada H, Sekine M, Kosugi H, Matsuo Y, Fujisawa T, Omata S, Kishi E, Shimizu A, Tsukatani N, Tanikawa S, Fujita N, Harayama S (2008) Complete genome sequence of the soil actinomycete Kocuria rhizophila. J Bacteriol 190:4139–4146

    Article  CAS  PubMed  Google Scholar 

  • Usaite R, Patil KR, Grotkjaer T, Nielsen J, Regenberg B (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, l-alanine, or l-glutamine limitation. Appl Environ Microbiol 72:6194–6203

    Article  CAS  PubMed  Google Scholar 

  • Vadali RV, Bennett GN, San KY (2004) Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab Eng 6:133–139

    Article  CAS  PubMed  Google Scholar 

  • Verdine GL (1996) The combinatorial chemistry of nature. Nature 384:11–13

    Article  CAS  PubMed  Google Scholar 

  • Vincent SF, Bell PJ, Bissinger P, Nevalainen KM (1999) Comparison of melibiose utilizing baker’s yeast strains produced by Precision Engineering and classical breeding. Lett Appl Microbiol 28:148–152

    Article  CAS  PubMed  Google Scholar 

  • Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hagerdal B, Jonsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Y, Chu J, Zhuang Y, Zhang L, Zhang S (2007) Improved production of erythromycin A by expression of a heterologous gene encoding S-adenosylmethionine synthetase. Appl Microbiol Biotechnol 75:837–842

    Article  CAS  PubMed  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Penttila M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast (Chichester, England) 10:211–225

    Article  CAS  Google Scholar 

  • Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J (2007) A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96:134–145

    Article  CAS  PubMed  Google Scholar 

  • Xiang SH, Li J, Yin H, Zheng JT, Yang X, Wang HB, Luo JL, Bai H, Yang KQ (2009) Application of a double-reporter-guided mutant selection method to improve clavulanic acid production in Streptomyces clavuligerus. Metab Eng 11:310–318

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Jiang Y, Qi D, Lu H, Yang F, Yang J, Chen L, Sun L, Xu X, Xue Y, Zhu Y, Jin Q (2009) Complete genome sequence of the extremophilic Bacillus cereus strain Q1 with industrial applications. J Bacteriol 191:1120–1121

    Article  CAS  PubMed  Google Scholar 

  • Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li Y, Du C, Liu M, Cao Z (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1, 3-propanediol production by Klebsiella pneumoniae. Metab Eng 8:578–586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Arnold Demain for critical reading of the manuscript and helpful discussions. This work was supported in part by grants from National Natural Science Foundation of China (No. 30700015), National 863 project (2006AA09Z402 and 2007AA09Z443), and Key Project of International Cooperation (2007DFB31620). National Key Technology R&D Program 2007BAI26B02, the National Science & Technology Pillar Program (No. 200703295000-02), Important National Science & Technology Specific Projects (No. 2008ZX09401-05), and Science and Technology Planning Project of Guangdong Province, China (No. 2006A50103001). L.Z. was an awardee for Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhang.

Additional information

H. Gao, X. Zhou, and Z. Gou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H., Zhou, X., Gou, Z. et al. Rational design for over-production of desirable microbial metabolites by precision engineering. Antonie van Leeuwenhoek 98, 151–163 (2010). https://doi.org/10.1007/s10482-010-9442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9442-4

Keywords

Navigation