Skip to main content
Log in

Analyses of bifidobacterial prophage-like sequences

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The genomes of 22 putative prophages (bifidoprophages), previously identified in bifidobacterial genomes, were analyzed to detect the presence and organization of functional modules. Bifidoprophages were shown to display a classical modular genomic organization in which the DNA lysogeny module and the DNA packaging regions are the most highly conserved. Furthermore, single phage gene as well as multiple phage gene-based phylogenetic analyses clearly revealed the chimeric make-up of the genomes of bifidoprophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackermann HW (1998) Tailed bacteriophages: the order caudovirales. Adv Virus Res 51:135–201

    Article  CAS  PubMed  Google Scholar 

  • Botstein D (1980) A theory of modular evolution for bacteriophages. Ann NY Acad Sci 354:484–490

    Article  CAS  PubMed  Google Scholar 

  • Brussow H (2001) Phages of dairy bacteria. Annu Rev Microbiol 55:283–303

    Article  CAS  PubMed  Google Scholar 

  • Bruttin A, Desiere F, Lucchini S, Foley S, Brussow H (1997) Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21. Virology 233(1):136–148

    Article  CAS  PubMed  Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67(2):238–276 table of contents

    Article  CAS  PubMed  Google Scholar 

  • Casjens SR (2005) Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol 8(4):451–458

    Article  CAS  PubMed  Google Scholar 

  • Desiere F, Lucchini S, Brussow H (1999) Comparative sequence analysis of the DNA packaging, head, and tail morphogenesis modules in the temperate cos-site Streptococcus thermophilus bacteriophage Sfi21. Virology 260(2):244–253

    Article  CAS  PubMed  Google Scholar 

  • Desiere F, Mahanivong C, Hillier AJ, Chandry PS, Davidson BE, Brussow H (2001) Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Virology 283(2):240–252

    Article  CAS  PubMed  Google Scholar 

  • Gasson MJ (1996) Lytic systems in lactic acid bacteria and their bacteriophages. Antonie Van Leeuwenhoek 70(2–4):147–159

    Article  CAS  PubMed  Google Scholar 

  • Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335(3):667–678

    Article  CAS  PubMed  Google Scholar 

  • Hatfull GF, Sarkis GJ (1993) DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol 7(3):395–405

    Article  CAS  PubMed  Google Scholar 

  • Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A, Ford ME, Gonda RM, Houtz JM, Hryckowian AJ, Kelchner VA, Namburi S, Pajcini KV, Popovich MG, Schleicher DT, Simanek BZ, Smith AL, Zdanowicz GM, Kumar V, Peebles CL, Jacobs WR Jr, Lawrence JG, Hendrix RW (2006) Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet 2(6):e92

    Article  PubMed  Google Scholar 

  • Hendrix RW, Roberts JW, Sthal FW, Weisberg RA (1984) Lambda II. Cold Spring Harbor Labortaory, Cold Spring Harbor, New York

    Google Scholar 

  • Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 96(5):2192–2197

    Article  CAS  PubMed  Google Scholar 

  • Lucchini S, Desiere F, Brussow H (1999a) The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: whole genome comparison of cos-site phages Sfi19 and Sfi21. Virology 260(2):232–243

    Article  CAS  PubMed  Google Scholar 

  • Lucchini S, Desiere F, Brussow H (1999b) Similarly organized lysogeny modules in temperate Siphoviridae from low GC content gram-positive bacteria. Virology 263(2):427–435

    Article  CAS  PubMed  Google Scholar 

  • McGrath S, Fitzgerald GF, van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43(2):509–520

    Article  CAS  PubMed  Google Scholar 

  • Mediavilla J, Jain S, Kriakov J, Ford ME, Duda RL, Jacobs WR Jr, Hendrix RW, Hatfull GF (2000) Genome organization and characterization of mycobacteriophage Bxb1. Mol Microbiol 38(5):955–970

    Article  CAS  PubMed  Google Scholar 

  • Payne K, Sun Q, Sacchettini J, Hatfull GF (2009) Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase. Mol Microbiol 73(3):367–381

    Article  CAS  PubMed  Google Scholar 

  • Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR Jr, Hendrix RW, Hatfull GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Pena CE, Lee MH, Pedulla ML, Hatfull GF (1997) Characterization of the mycobacteriophage L5 attachment site, attP. J Mol Biol 266(1):76–92

    Article  CAS  PubMed  Google Scholar 

  • Sampson T, Broussard GW, Marinelli LJ, Jacobs-Sera D, Ray M, Ko CC, Russell D, Hendrix RW, Hatfull GF (2009) Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements. Microbiology 155(Pt 9):2962–2977

    Article  CAS  PubMed  Google Scholar 

  • Smith MC, Burns RN, Wilson SE, Gregory MA (1999) The complete genome sequence of the Streptomyces temperate phage straight phiC31: evolutionary relationships to other viruses. Nucleic Acids Res 27(10):2145–2155

    Article  CAS  PubMed  Google Scholar 

  • Sternberg N, Coulby J (1987) Recognition and cleavage of the bacteriophage P1 packaging site (pac). II. Functional limits of pac and location of pac cleavage termini. J Mol Biol 194(3):469–479

    Article  CAS  PubMed  Google Scholar 

  • Teichmann SA, Mitchison G (1999) Is there a phylogenetic signal in prokaryote proteins? J Mol Evol 49(1):98–107

    Article  CAS  PubMed  Google Scholar 

  • Tetart F, Desplats C, Krisch HM (1998) Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J Mol Biol 282(3):543–556

    Article  CAS  PubMed  Google Scholar 

  • Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, de’Angelis GL, Shanahan F, van Sinderen D, Ventura M (2009a) Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75(6):1534–1545

    Article  CAS  PubMed  Google Scholar 

  • Turroni F, Marchesi JR, Foroni E, Gueimonde M, Shanahan F, Margolles A, van Sinderen D, Ventura M (2009b) Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME J 3(6):745–751

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Lee JH, Canchaya C, Zink R, Leahy S, Moreno-Munoz JA, O’Connell-Motherway M, Higgins D, Fitzgerald GF, O’Sullivan DJ, van Sinderen D (2005) Prophage-like elements in bifidobacteria: insights from genomics, transcription, integration, distribution, and phylogenetic analysis. Appl Environ Microbiol 71(12):8692–8705

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, O’Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen D, O’Toole P (2009a) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Turroni F, Lima-Mendez G, Foroni E, Zomer A, Duranti S, Giubellini V, Bottacini F, Horvath P, Barrangou R, Sela DA, Mills DA, van Sinderen D (2009b) Comparative analyses of prophage-like elements present in bifidobacterial genomes. Appl Environ Microbiol 75(21):6929–6936

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon works supported by a Principal Investigator Grant (to DvS, grant number 08/IN.1/B1909) and the Alimentary Pharmabiotic Centre, a Centre for Science and Technology, both funded by Science Foundation Ireland (SFI) through the Irish Government’s National Development Plan, by the Italian Award for Outstanding Young Researcher scheme “Incentivazione alla mobilita’ di studiosi stranieri e italiani residenti all’estero” and to the Marie Curie Reintegration Grant (MERG-CT-2005-03080) to MV and by an IRCSET Embark postgraduate fellowship to F.B. The project described was partially supported by NIH-NIGMS T32-GM08799 (DAS). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIGMS or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ventura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, M., Turroni, F., Foroni, E. et al. Analyses of bifidobacterial prophage-like sequences. Antonie van Leeuwenhoek 98, 39–50 (2010). https://doi.org/10.1007/s10482-010-9426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9426-4

Keywords

Navigation