Skip to main content
Log in

Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Toxigenic strains of Clostridium difficile were co-cultured with different strains of bifidobacteria and lactobacilli. Spent culture supernatants were tested for biological activity on cultured Vero cells. Co-culture of C. difficile with some potentially probiotic strains lead to a reduction of the biological activity of spent culture supernatants. The observed effects cannot be ascribed either to secreted factors from the probiotic strains or to toxin adsorption by bacterial cells. Immunological assays showed that there was significant diminution of both clostridial toxins (TcdA and TcdB) in spent culture supernatants of co-cultures as compared with pure clostridial cultures. Even though co-cultured clostridial cells showed a slight increase of intracellular toxins, this increase did not completely explains the reduction of toxin concentration in culture supernatants. The evidence suggests that the antagonism could be due to the diminution of the synthesis and/or secretion of both clostridial toxins. Our findings provide new insights into the possible mechanisms involved in the protective effect of probiotics in the context of C. difficile infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SCS:

Spent culture supernatants

TcdA:

C. difficile toxin A

TcdB:

C. difficile toxin B

CDAD:

C. difficile associated diarrhea

OD600 nm :

Optical density at 600 nm

PBS:

Phosphate buffered saline

DMEM:

Dulbbeco’s Modified Eagle’s Medium

rd:

Ratio of detached cells

NBT:

Nitro-blue tetrazolium chloride

BCIP:

5-Bromo-4-chloro-3′-indolyphosphate p-toluidine salt

DD50:

Dose of SCS that leads to the detachment of 50% of the cells

References

  • Banerjee P, Merkel GJ, Bhunia AK (2009) Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathog 1:8–19

    Article  PubMed  Google Scholar 

  • Bélanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG (2003) Rapid detection of Clostridium difficile in feces by Real-time PCR. J Clin Microbiol 41:730–734

    Article  PubMed  Google Scholar 

  • Benyacoub J, Pérez PF, Rochat F, Saudan KY, Reuteler G, Antille LN, Humen MA, De Antoni GL, Cavadini C, Blum S, Schiffrin EJ (2005) Enterococcus faecium strain SF68 improves immune response to Giardia intestinalis in mice. J Nutr 135:1171–1176

    CAS  PubMed  Google Scholar 

  • Castagliuolo I, Keates AC, Wang CC, Pasha A, Valenick L, Kelly CP, Nikulasson ST, LaMont JT, Pothoulakis C (1998) Clostridium difficile toxin A stimulates macrophage-inflammatory protein-2 production in rat intestinal epithelial cells. J Immunol 160:6039–6045

    CAS  PubMed  Google Scholar 

  • Chen X, Kokkotou EG, Mustafa N, Bhaskar KR, Sougioultzis S, Pothoulakis C, Kelly CP (2006) Saccharomyces boulardii inhibits ERK1/2 mitogen activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J Biol Chem 281:24449–24454

    Article  CAS  PubMed  Google Scholar 

  • Collado MC, Gueimonde M, Hernández M, Sanz Y, Salminen S (2005) Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 68:2672–2678

    PubMed  Google Scholar 

  • Colombel JF, Cortot A, Neut C, Romond C (1987) Yoghurt with Bifidobacterium longum reduces erythromycin-induced gastrointestinal effects. Lancet 2:43

    Article  CAS  PubMed  Google Scholar 

  • Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL (2007) Repression of Clostridium difficile gene expression by CodY. Mol Microbiol 66:206–219

    Article  CAS  PubMed  Google Scholar 

  • Dubberke ER, Reske KA, Yan Y, Olsen MA, McDonald LC, Fraser VJ (2007) Clostridium difficile-associated disease in a setting of endemicity: identification of novel risk factors. Clin Infect Dis 45:1543–1549

    Article  PubMed  Google Scholar 

  • Dupuy B, Sonenshein AL (1998) Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27:107–120

    Article  CAS  PubMed  Google Scholar 

  • Garrote GL, Abraham AG, De Antoni AG (2001) Chemical and microbiological characterisation of kefir grains. J Dairy Res 68:639–652

    Article  CAS  PubMed  Google Scholar 

  • Gomez Zavaglia A, Kociubinski G, Pérez PF, De Antoni GL (1998) Isolation and characterization of Bifidobacterium strains for probiotic formulation. J Food Prot 61:865–873

    CAS  PubMed  Google Scholar 

  • Govind R, Vediyappan G, Rolfe RD, Fralik JA (2006) Evidence that Clostridium difficile TcdC is a membrane-associated protein. J Bacteriol 188:3716–3720

    Article  CAS  PubMed  Google Scholar 

  • Gursoy S, Guven K, Arikan T, Yurci A, Torun E, Baskol M, Ozbakir O, Yucesoy M (2007) Clostridium difficile infection frequency in patients with nosocomial infections or using antibiotics. Hepatogastroenterology 54:1720–1724

    CAS  PubMed  Google Scholar 

  • Hugo AA, Kakisu EJ, De Antoni GL, Pérez PF (2008) Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro. Lett Appl Microbiol 46:613–619

    Article  CAS  PubMed  Google Scholar 

  • Humen MA, De Antoni GL, Benyacoub J, Costas ME, Cardozo MI, Kozubsky L, Saudan K-Y, Boenzli-Bruand A, Blum S, Schiffrin EJ, Pérez PF (2005) Lactobacillus johnsonii La1 antagonizes Giardia intestinalis in vivo. Infect Immun 73:1265–1269

    Article  CAS  PubMed  Google Scholar 

  • Hundsberger T, Braun V, Weidmann M, Leukel P, Sauerborn M, Von Eichel-Streiber C (1997) Transcription analysis or the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244:735–742

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Giesemann T, Aktories K (2007) Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology 17:15R–22R

    Article  CAS  PubMed  Google Scholar 

  • Karlsson S, Lindberg A, Norin E, Burman LG, Akerlund T (2000) Toxins, butyric acid, and short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun 68:5881–5888

    Article  CAS  PubMed  Google Scholar 

  • Karlsson S, Burman LG, Akerlund T (2008) Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. Microbiology 154:3430–3436

    Article  CAS  PubMed  Google Scholar 

  • Kotowska M, Albrecht P, Szakewska H (2005) Saccharomyces boulardii in the prevention of antibiotic-associated diarrhea in children: a randomized double-blind placebo-controlled trial. Aliment Pharmacol Ther 21:583–590

    Article  CAS  PubMed  Google Scholar 

  • Lewis S, Burmeister S, Brazier J (2005) Effect of the probiotic oligofructose on relapse of Clostridium difficile-associated diarrhea: a randomized, controlled study. Clin Gastroenterol Hepatol 3:442–448

    Article  CAS  PubMed  Google Scholar 

  • Limaye AP, Turgeon DK, Cookson BT, Fritsche TR (2000) Pseudomembranous colitis caused by a toxin A(−) B(+) strain of Clostridium difficile. J Clin Microbiol 38:696–697

    Google Scholar 

  • Lyerly DM, Krivan HC, Wilkins TD (1988) Clostridium difficile: its disease and toxins. Clin Microbiol Rev 1:1–18

    CAS  PubMed  Google Scholar 

  • Maegawa T, Karasawa T, Ohta T, Wang X, Kato H, Hayashi H, Nakamura S (2002) Linkage between toxin production and purine biosynthesis in Clostridium difficile. J Med Microbiol 51:34–41

    CAS  PubMed  Google Scholar 

  • Mani N, Dupuy B (2001) Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. PNAS 98:5844–5849

    Article  CAS  PubMed  Google Scholar 

  • Matsuki S, Ozaki E, Shozu M, Inoue M, Shimizu S, Yamaguchi N, Karasawa T, Yamagishi T, Nakamura S (2005) Colonization by Clostridium difficile of neonates in a hospital, and infants and children in three day-care facilities of Kanazawa, Japan. Int Microbiol 8:43–48

    PubMed  Google Scholar 

  • Medrano M, Pérez PF, Abraham AG (2008) Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. Int J Food Microbiol 122:1–7

    Article  CAS  PubMed  Google Scholar 

  • Medrano M, Hamet MF, Abraham AG, Pérez PF (2009) Kefiran protects Caco-2 cells from cytopathic effects induced by Bacillus cereus infection. Antonie van Leewenhoek 96:505–513

    Article  CAS  Google Scholar 

  • Minnaard J, Humen M, Pérez PF (2001) Effect of Bacillus cereus exocellular factors on human intestinal epithelial cells. J Food Prot 64:1535–1541

    CAS  PubMed  Google Scholar 

  • Minnaard J, Lievin-Le Moal V, Coconnier MH, Servin AL, Pérez PF (2004) Disassembly of F-actin cytoskeleton after interaction of Bacillus cereus with fully differentiated human intestinal Caco-2 cells. Infect Immun 72:3106–3112

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Mikawa M, Tanabe N, Yamakawa K, Nishida S (1982) Effect of clindamycin on cytotoxin production by Clostridium difficile. Microbiol Immunol 26:985–992

    CAS  PubMed  Google Scholar 

  • Niers LE, Hoekstra MO, Timmerman HM, van Uden NO, de Graaf PM, Smits HH, Kimpen JL, Rijkers GT (2007) Selection of probiotic bacteria for prevention of allergic diseases: immunomodulation of neonatal dendritic cells. Clin Exp Immunol 149:344–352

    Article  CAS  PubMed  Google Scholar 

  • Osgood DP, Wood NP, Sperry JF (1993) Nutritional aspects of cytotoxin production by Clostridium difficile. Appl Environ Microbiol 59:3985–3988

    CAS  PubMed  Google Scholar 

  • Perez PF, Minnaard J, Disalvo EA, De Antoni GL (1998) Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64:21–26

    CAS  PubMed  Google Scholar 

  • Plummer S, Weaver MA, Harris JC, Dee P, Hunter J (2004) Clostridium difficile pilot study: effects of probiotic supplementation on the incidence of C. difficile diarrhoea. Int Microbiol 7:59–62

    PubMed  Google Scholar 

  • Rönnqvist D, Forsgren-Brusk U, Husmark U, Grahn-Håkansson E (2007) Lactobacillus fermentum Ess-1 with unique growth inhibition of vulvo-vaginal candidiasis pathogens. J Med Microbiol 56:1500–1504

    Article  PubMed  Google Scholar 

  • Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilán CG, Salminen S (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69:2011–2015

    CAS  PubMed  Google Scholar 

  • Schirmer J, Aktories K (2004) Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins. Biochim Biophys Acta 1673:66–74

    CAS  PubMed  Google Scholar 

  • Schroeder M (2005) Clostridium difficile associated diarrhea. Am Fam Physician 71:921–928

    PubMed  Google Scholar 

  • Segarra-Newnham M (2007) Probiotics for Clostridium difficile-associated diarrhea: focus on Lactobacillus rhamnosus GG and Saccharomyces boulardii. Ann Pharmacother 41:1284–1287

    Article  Google Scholar 

  • Sunenshine RH, McDonald LC (2006) Clostridium difficile-associated disease: new challenges from an established pathogen. Cleve Clin J Med 73:187–197

    Article  PubMed  Google Scholar 

  • Trejo FM, Minnaard J, Pérez PF, De Antoni GL (2006) Inhibition of Clostridium difficile growth and adhesion to enterocytes by Bifidobacterium supernatants. Anaerobe 12:186–193

    Article  CAS  PubMed  Google Scholar 

  • Wullt M, Hagslatt ML, Odenholt I (2003) Lactobacillus plantarum 299v for the treatment of recurrent Clostridium difficile-associated diarrhoea: a double-blind, placebo-controlled trial. Scand J Infect Dis 35:365–367

    Article  PubMed  Google Scholar 

  • Yamakawa K, Karasawa T, Ohta T, Hayashi H, Nakamura S (1998) Inhibition of enhanced toxin production by Clostridium difficile in biotin-limited conditions. J Med Microbiol 47:767–771

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo F. Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trejo, F.M., Pérez, P.F. & De Antoni, G.L. Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Antonie van Leeuwenhoek 98, 19–29 (2010). https://doi.org/10.1007/s10482-010-9424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9424-6

Keywords

Navigation